為支持在不確定的動態環境中長期部署,同時減少人類面臨的威脅和危險,有必要將更多支持人工智能(AI)的機器人整合到軍事和第一反應領域。人工智能機器人作為人類隊友的有效整合將提供支持并提高整體任務性能;然而,目前有關人機交互的研究大多只關注機器人團隊主管。要將機器人真正融入軍事和第一反應任務,需要人類扮演從最高指揮層到直接與機器人一起工作的下地人員等多種角色。層級結構中的所有人類角色都必須了解并保持對機器人隊友的直接控制。本文將文獻中現有的人類角色映射到軍事任務中,提出了與未來人類-機器人團隊合作相關的技術挑戰,并提供了潛在的解決方案和建議,以推動該領域向能夠完成相關領域任務的人類-機器人團隊邁進。
圖:人類與機器人協同作戰的概念軍事示意圖,顯示了 (a) 前沿作戰基地、(b) 下裝巡邏和 (c) 車輛巡邏的示例。請注意,為便于查看,人員、機器人和車輛均已放大。
圖 1 提供了角色圖示,用于說明軍事小故事。有些角色將駐扎在遠離戰場或事件響應區(也稱為熱區)的地方,在那里他們可以從更廣闊的視角來了解需要管理的情況。如圖 1a 所示,這類軍事角色可能駐扎在前方作戰基地。圖 1b 和 c 顯示了結合地面和空中機器人的兩個部署示例,一個是徒步巡邏,另一個是乘車巡邏。這些示例展示了不同角色如何分布在一個軍事單元中,并包括平民旁觀者。
多年來,人工智能一直被用于改進信號情報的收集和分析,但本文探討了生成式人工智能可為戰略情報分析人員執行的一系列任務。文章認為,將生成式人工智能融入情報評估的最穩妥做法是作為人類分析師的 “副駕駛員”。盡管存在不準確、輸入偏差和 “幻覺 ”等問題,但生成式人工智能可以解放時間不足的分析人員,讓他們專注于人類最有價值的任務--運用他們的專業知識、隱性知識和 “現實感”。
人工智能(AI)是無法回避的。我們每個人每天都直接或間接地與它打交道。除了柯潔在圍棋比賽中輸給谷歌的 AlphaGo 這樣的偶然拐點之外,人工智能幾乎沒有大張旗鼓地滲入社會。但現在,圍繞人工智能的爭論非常突出。這主要與用戶友好型生成式人工智能軟件的發布和廣泛采用有關,其中最著名的是 ChatGPT 和 Google Bard。這些功能強大的程序潛力巨大,許多評論家認為它們的影響堪比另一場工業革命。的確,將人工智能應用到各個領域,尤其是醫學領域,可能會帶來革命性的變化;但同樣,它也會帶來巨大的潛在風險--安全、經濟、社會和文化風險。首相蘇納克(Rishi Sunak)希望英國能掌握這個等式的兩面:在人工智能監管和安全方面引領世界,11 月在布萊切利公園舉行的人工智能安全峰會就是一個標志;同時也要抓住這項技術帶來的機遇。八十年前,布萊切利公園的前主人--密碼破譯員、語言學家、數學家和工程師--曾與英格瑪機器搏斗并開創了計算技術的先河。本文關注的是生成式人工智能為他們在情報界的繼承者,特別是那些專注于情報評估技術的繼承者帶來的機遇和挑戰。文章認為,生成式人工智能有可能極大地補充分析工作。但就目前而言,它最有用的應用是作為輔助工具、副駕駛員,它有可能極大地增強分析人員的工作,但也應謹慎使用。
情報與技術是一對老朋友。幾十年來,它們彼此推動著對方的發展。這一點在電子和計算機領域體現得最為明顯。在秘密行動中,情報機構推動了技術的發展。它們還經常是新技術的早期采用者,利用新技術開發、維護和增強能力。畢竟,適應性是成功情報機構的標志之一。英國皇家情報總部成功地從模擬機構轉型為數字機構,如今甚至將自己定位為 “情報、安全和網絡機構”。人工智能已經以多種方式補充了情報工作。各國經常使用人工智能增強系統來協助收集情報。許多在秘密領域工作的私營部門承包商也在人工智能領域大顯身手。由人工智能軟件支持的閉路電視攝像網絡被廣泛用于識別和追蹤城市環境或恐怖風險較高地區(如火車站)的個人或物體。這種技術也為專制政府提供了無與倫比的機會來壓制不同意見或異議,新疆和其他地方的情況就說明了這一點。除數據收集外,這項活動的大部分內容還涉及更輕松、更高效地對數據進行鑒別或選擇,從而為時間有限的分析人員的工作提供便利,因為他們需要評估這些數據的含義。人工智能被廣泛應用于翻譯、將截獲的互聯網流量減少到可控水平、語音識別或在開放的互聯網上搜索對象的協會和聯系人等費力的任務。在英國,INDEX 系統允許分析人員在政府和外部報告中進行搜索。核心信息可以通過自然語言處理系統提取和匯總。但是,正如剛剛退休的英國聯合情報委員會主席西蒙-加斯(Simon Gass)爵士在今年 6 月指出的,“我們正處在這個階段的山腳下”。
需要將生成式人工智能和大型語言模型(LLM)整合到情報評估的正常業務中。簡單地說,生成式人工智能是指 “能夠根據訓練數據生成高質量文本、圖像和其他內容的深度學習模型”。這些技術已經在國防和情報領域受到高度重視。英國國防部國防創新總監約翰-里奇(John Ridge)最近指出,“我們可以肯定的一點是,這類能力將是絕對關鍵的”。這些能力是革命性的,還是只是情報工作的另一個發展階段,還有待觀察。但它們改變商業模式的潛力是顯而易見的。前幾代人工智能主要集中在更有效地收集數據和更有效地整理擺在民間和軍事情報分析師面前的材料上,而生成式人工智能則展示了承擔迄今為止只有人類分析師才能完成的任務的潛力。基于 LLM 的工具(如 ChatGPT)的主要賣點是,它們可以對問題或命令形式的提示做出響應,并利用現有材料在特定參數范圍內做出響應。或者換一種說法,可以命令它們按照特定規格撰寫類似人類的報告,以計算機的速度,根據大量數據提出見解或作出推論。
從這個意義上說,情報分析和評估與其他以研究為基礎的工作領域處于類似的地位,它們可能(而且幾乎肯定會)受到干擾。這些領域包括醫療和法律行業,在這些行業中,根據有關特定主題的全部數字化文獻資料快速、清晰地編寫報告或文件的前景非常誘人。教育領域也受到了影響,其傳統模式正在被檢測機器生成的作品這一挑戰以及人工智能時代究竟什么才是合法研究這一更具哲學意義的問題所顛覆。盡管如此,在這些領域中的每一個領域,理論上都可以在很大程度上將曾經由人類完成的基本任務外包給機器,盡管需要保持謹慎的警惕。這樣做已經產生了令人印象深刻、有時甚至發人深省的成果,比如一篇關于 ChatGPT 對檢測剽竊行為的影響的學術論文,該論文已提交給同行評審的學術期刊,并被其接受,但這篇論文是用 ChatGPT “寫 ”出來的。不過,如果從各行各業廣泛采用 LLM 的軼事證據來看,人類分析師的日子還遠未到頭。在不久的將來,應將 LLMs 視為情報分析員的額外工具,是提高效率和效力的輔助工具。他們是 “副駕駛員”,可以評估論點、進行數據分析或校對,而不是潛在的替代者。就目前而言,在這些領域中的任何一個領域,要想以其他方式開展工作,風險都太大了。情報工作也不例外:在全球競爭的環境中,整合這些工具的必要性只會越來越強,但過快或魯莽行事顯然存在風險。審慎的做法是,情報評估機構利用人工智能增強人類分析師的能力,為他們創造更多的時間和空間,讓他們運用不可或缺的隱性知識和 “現實感”--以賽亞-伯林(Isaiah Berlin)所說的感同身受的理解是歷史解釋的一個關鍵特征--來理解全局。
令人欣慰的是,谷歌Bard也同意這一點。當被問及它能為情報分析帶來哪些好處時,該程序回答說,它可以執行許多有用的任務。這些任務包括收集信息、分析信息、生成報告、交流研究結果、提出情報需求、管理情報資源和監督情報行動,以確保它們符合法律和道德標準。但是,當被要求確定使用 LLMs 進行戰略情報分析的風險時,它指出:"重要的是,要將機器的產出與情報分析結合起來: 重要的是要將機器輸出與人工分析和解釋以及對地緣政治環境的全面了解結合起來"。顯然,如果 “言聽計從”,該系統具有巨大的潛力。但在充分挖掘潛力之前,所有相關人員都需要考慮并解決幾個基本挑戰。
這些問題包括通常對 IT 網絡安全性和穩健性的擔憂,例如:確保集成軟件經過安全架構審查所面臨的挑戰、供應鏈風險的可能性、數據存儲的安全性、確保提交給任何系統的查詢都經過加密或不可能被敵方重建。其他值得注意的安全問題來自于大量的訓練數據、數十億個參數以及設計可行工具所需的訓練過程。目前,這項工作是在基于云的系統中進行的,因此除了常見的網絡安全問題外,還增加了數據主權問題。此外,為了最大限度地發揮其價值和效用,特別是在快速發展的情況下,LLM 需要經常或持續訪問互聯網。顯然,有必要將那些與開放互聯網保持聯系的系統與情報分析員處理更敏感材料和制作情報評估產品的封閉、保密網絡分開。
上述問題都不是不可克服的,但這些挑戰突出表明,必須有條不紊地解決這一問題,協調政府各相關機構利益攸關方,以成功實施這一至關重要的信息技術項目。這些挑戰也并不都集中在如何確保系統不被敵對勢力破壞上。還需要考慮監管問題。事實上,大衛-安德森(David Anderson)勛爵在上議院關于人工智能的辯論中指出,"在一個人人都在使用開源數據集來訓練大型語言模型的世界里,英國信息中心受到了《調查權力法》第 7 部分的獨特限制。這些限制'在某些重要情況下影響了英國信息中心的靈活性,影響了它與商業伙伴的合作,影響了它招聘和留住數據科學家的能力,并最終影響了它的效率'。
只要能找到令人滿意的解決方案,LLM 對分析師工作的許多方面都極為有用。其中包括較為傳統但費力的任務,如作為研究助理,就特定主題(如國際爭端的背景)提供近乎即時的不同長度和細節的摘要,或構建時間軸、撰寫簡介、總結或分析冗長的文本,或(假設版權和訂閱問題得到解決)將最新的學術著作納入其中。雖然第一批LLM是在英語語料庫中接受培訓的,但目前開發多語言模型的工作進展順利。當然,鑒于已發現生成式人工智能生成的回復在準確性和完整性方面存在問題,任何此類產品都必須經過主題專家的檢查,類似于跨白廳當前情報小組系統。這可能會提高穩健性和效率,并隨著時間的推移,促進機構學習和流程改革。
但潛力顯然不止于此。生成式人工智能還可以包括更先進、更重要的工作。例如,分析師可以使用 LLM 來審查和驗證他們的書面報告,從而增強現有的分析流程和產品審計程序。例如,可以要求提供任何對關鍵判斷提出質疑或證偽的數據;查詢長期以來生成的報告,以確定已成為傳統智慧的假設;或使用工具生成 “紅隊 ”評估。從理論上講,這種能力可以在幾個方面幫助分析人員識別或根除導致情報失敗的某些偏見因素,并確保報告盡可能是最新的。不難想象,這些工具的提供和適當使用將如何提高分析界的速度、影響范圍和批判性地反思其行為和業績的能力。
目前這一代 LLM 也可以撰寫報告或評估報告。將此類寫作任務的早期起草階段外包給一個工具,可為資源和時間貧乏的情報分析員創造經濟效益。毫無疑問,謹慎采用 LLM 是有道理的。但這項技術仍然有限,需要認真監測。這些局限性帶來了風險,這一點在 2023 年大眾廣泛嘗試使用 LLM 之后已經得到證明和充分記錄(在 META 推出 Threads 之前,沒有任何應用能像 ChatGPT 那樣迅速得到采用,該應用在推出后五天內用戶就達到了 100 萬)。對于情報分析師及其產品的接收者來說,其中許多挑戰都是非常棘手的。其中包括對這些工具所提供信息的準確性和可靠性的擔憂。這些系統非常善于生成似是而非的文本、聲明和結論。但這些可能在現實中沒有任何依據,甚至在建立 LLM 的訓練數據中也沒有任何依據。這種 “幻覺 ”已被廣泛觀察到;在學術工作中,經常出現的 “幻覺 ”是生成不存在的資料來源(例如,引用聽起來很有道理但實際上并不存在的網頁)來支持生成的主張。這究竟是 LLM 的一個特點還是一個缺陷,還存在爭議。無論如何,這都對采用 LLM 進行情報評估構成了重大挑戰。分析人員從這些工具中獲取材料并將其納入分析產品時,必須對基礎源數據進行系統檢查。因此,這項技術提出了一個悖論:一是節省時間,二是增加工作量。
與其他人工智能系統一樣,LLM 也會在其生成的任何內容中嵌入偏見。該系統的吸引力和潛力在于它有能力攝取和查詢大量資料--基本上是整個開放互聯網--但必然結果是,該系統也會攝取現有的偏見和廢話,這些偏見和廢話可能是關于特定主題的主流敘事,或者是關于特定主題的特定語言。同樣,毫無疑問,破壞性或惡意行為者會利用 LLM 快速、廉價地生成大量虛假信息并充斥網絡。毫無疑問,敵對行為者也會試圖毒害公共或專有 LLM。目前,大多數開放的生成式人工智能應用程序本質上都是黑盒子,這些系統不允許(或不會允許)用戶檢查它們得出特定判斷的過程。這是由于神經網絡依賴多層節點處理數據的本質所致。這種可觀察性的缺乏,再加上基于 LLM 的系統在可復制性方面的某種脆性--即它對準確提示措辭的依賴--帶來了風險和挑戰。事實上,鑒于在專業情報界對分析評估采用可審計程序的重要性,在這些工具被納入正常業務之前,這個問題構成了一個需要克服的重大障礙--或者說需要掌握的挑戰。正如在人工智能之前的時代一樣,結論必然需要由經驗豐富、訓練有素的人員進行檢查、驗證和整個過程的審計。
這些風險有可能被充分降低,使這些工具能夠相對迅速地融入分析流程。許多研究人員正在開發人工智能系統,以識別人工智能在各種情況下生成的內容,如學術論文或視頻文件。還有一些研究人員正在研究可審計的 LLM 系統;還有一些研究人員正在研究如何開發安全的系統,讓分析人員能夠在分類系統和開放的互聯網上進行搜索。但是,即使這些問題可以得到緩解,還有另一個根本性的問題,即這些系統是否只能是衍生系統,因為它們基本上完全建立在基于已有材料的計算模型之上。它們所提供的洞察力能否與任何接近 “想象力 ”的東西相匹配,還是說它們目前的貢獻仍將局限于語法和風格的練習,偶爾會出現幻覺?或者,換一種說法,他們可能會對某個問題進行極其(或表面上)合理的討論,但鑒于這些討論是根據一個統計模型得出的,該模型關注的是某個特定的詞或概念或 “標記 ”與另一個詞或概念或 “標記 ”相聯系的可能性,并以訓練材料為基礎,那么討論結果中是否會存在固有的保守主義或其他偏見?盡管如此,該領域的變化速度之快,即使預測其對情報評估的相對近期影響也充滿了不確定性,突出表明需要不斷審查該領域的發展。
雖然其他類型人工智能的貢獻已經得到證實,但對生成型人工智能的前景過于技術樂觀也會帶來風險。雖然這不是一個精確的類比,但美國情報界在 9/11 事件之前忽視人類情報(HUMINT)技能而青睞高科技的做法,應該為任何想把 LLM 的出現視為減少情報界人力的機會的人提供一個警示。選擇不當的捷徑會造成長期延誤。顯然,政府必須也必須與 LLM 打交道,必須不斷審查現有技術的效用,并愿意在這些系統得到驗證后擴大其使用范圍。但是,除了投資(擁有或使用)LLM,政府還應保留并加倍投資于人。在采用 LLM 的過程中,最大限度地提高效益和降低風險的一個關鍵因素將需要包括保持和發展對情報分析師的培訓,使他們能夠最好地利用這些強大的新工具。這可能包括專業途徑,培養一批善于將生成式人工智能融入分析實踐 “新常態 ”的官員,使他們能夠掌握現有系統,最大限度地發揮其效用,同時將其帶來的風險降至最低。但同時也應保持并優先培養主題和分析技術方面的專家,他們可以用經驗和智慧、隱性知識和人類特有的 “現實感 ”來補充生成式人工智能的巨大威力。在開展這項工作的同時,還應在政府內部(更不用說更廣泛的公眾)開展更廣泛的教育計劃,讓他們了解人工智能的用途和局限性。消費者,尤其是自詡為技術狂熱者和有遠見的 “深層國家 ”或 “小集團 ”的破壞者,應該仔細了解由于 LLM 的便利而繞過其分析機制的局限性和風險。世界不需要唐納德-拉姆斯菲爾德(Donald Rumsfeld)在伊拉克戰爭前的 “特別計劃辦公室”(ChatGPT)。就目前而言,將 LLM 衍生工具整合到分析流程中最合理的使用案例是,由經驗豐富、訓練有素的人類分析師作為 “副駕駛員”,嵌入到仍然樂于向消費者提供不受歡迎的消息的組織中。
在需要做出重大決策的關鍵系統中,通常無法實現或不希望實現完全自動化。相反,人類-人工智能團隊可以取得更好的效果。為了研究、開發、評估和驗證適合這種團隊合作的算法,有必要建立輕量級實驗平臺,實現人類與多個智能體之間的互動。然而,此類平臺在國防環境中的應用實例非常有限。為了填補這一空白,我們提出了 Cogment 人機協同實驗平臺,該平臺實現了以異構多智能體系統為特征的人機協同(HMT)用例,可涉及學習型人工智能智能體、靜態人工智能智能體和人類。它建立在 Cogment 平臺上,已被用于學術研究,包括在今年的 AAMAS 的 ALA 研討會上展示的工作。希望通過這個平臺,進一步促進關鍵系統和國防環境中的人機協作研究。
圖 1:該圖顯示了 Cogment HMT 實驗平臺的主用戶界面。左側帶帽的圓圈是由五個藍色智能體組成的團隊防守的禁區。右側的單個紅點是無人機攻擊者。
嵌入式人工智能體,如無人駕駛飛行器(UAV,或無人機),有可能徹底改變各行各業,包括交通、農業和安防。然而,這些智能體在物理世界中發展,因此可能會產生危險影響,尤其是在無人監管的情況下。例如,無人機可能會出現故障或無法識別潛在危險,從而造成財產損失甚至人員傷亡。此外,智能體可以根據算法做出決策,而算法可能不會考慮倫理、道德或法律方面的影響。因此,人類必須有能力對這些智能體進行有意義的控制[2]和監督,以確保它們的安全和負責任的使用。人類操作員可以監控和干預系統故障,評估潛在風險,并在需要其判斷的復雜情況下做出道德或法律決定。
除了監督,人類還可以通過協作在幫助智能體實現任務方面發揮關鍵作用。例如,對于無人機,控制中心的人類操作員可以提供實時指導和支持,確保無人機準確、高效地執行所需的功能。此外,人類還可以在現場充當隊友,與具身的人工智能體并肩作戰,實現既需要人類判斷又需要機器精確度的復雜目標。
此外,必須認識到,人機協作(HMT),即人類與具身智能體建立雙向協作的能力,是安全有效使用人工智能的一個關鍵方面。這類人工智能體的設計、訓練、驗證和操作不能孤立地進行,必須考慮它們如何融入包括它們在內的更大系統中。人類,尤其是作為操作員或隊友的人類,從一開始就應被視為該系統不可分割的一部分。
除了這種雙向協作之外,具身人工智能系統在運行過程中往往沒有考慮到 “道德責任 ”和 “社會技術 ”因素[2]。有意義人類控制(MHC)的概念是由 Santoni de Sio 和 van den Hoven 提出的,目的是讓人類能夠影響具身人工智能體的行為[3]。然而,MHC 的原始定義并不一致,因為人類可能缺乏專業技能或知識,無法完全有效地控制人工智能系統。Cavalcante Siebert 等人[2]提出了四個附加屬性來改進 MHC 的原始定義:“明確的道德操作設計領域”、“適當且相互兼容的表征”、“控制能力和權限 ”以及 “人工智能與人類行動之間的明確聯系”。因此,至關重要的是設計一個協調平臺,將有意義的人類控制和人類在環相結合,以確保人工智能系統的訓練和操作方式符合人類價值觀、社會規范和道德行為。
Cogment HMT 提供了一個設計和實驗人機團隊的平臺,尤其是涉及無人機的人機團隊。它以我們的 Cogment [4] 平臺為基礎,解決了協調自動決策系統(包括人工智能體)、人類之間的協作及其對數據的訪問和對環境的影響等難題。Cogment HMT 實驗平臺目前使用一個模擬環境,可以很容易地進行調整,以適應更真實的模擬和現實世界的部署。我們將在第三節介紹該平臺及其特性。
利用 Cogment HMT 實驗平臺,人工智能從業者可以開發出能夠與人類協同工作的智能體,并從人類的知識和期望中學習,同時考慮有意義的人類控制、信任和認知負荷管理等因素,實現有效的雙向人機協作。我們將在第四部分介紹早期成果。
為計算機生成兵力(CGF)創建行為模型是一項具有挑戰性且耗時的任務,通常需要具備復雜人工智能算法編程方面的專業知識。因此,對于了解應用領域和培訓目標的主題專家來說,很難建立相關的場景并使培訓系統與培訓需求保持同步。近年來,機器學習作為一種為合成智能體建立高級決策模型的方法,已顯示出良好的前景。這類智能體已經能夠在撲克、圍棋和星際爭霸等復雜游戲中擊敗人類冠軍。我們有理由相信,軍事模擬領域也有可能取得類似的成就。然而,為了有效地應用這些技術,必須獲得正確的工具,并了解算法的能力和局限性。
本文討論了深度強化學習的高效應用,這是一種機器學習技術,可讓合成智能體學習如何通過與環境互動來實現目標。我們首先概述了現有的深度強化學習開源框架,以及最新算法的參考實現庫。然后,我們舉例說明如何利用這些資源為旨在支持戰斗機飛行員培訓的計算機生成兵力軟件構建強化學習環境。最后,基于我們在所介紹環境中進行的探索性實驗,我們討論了在空戰訓練系統領域應用強化學習技術的機遇和挑戰,目的是為計算機生成的兵力有效構建高質量的行為模型。
在實驗中,將強化學習環境構建為實現 OpenAI Gym 接口的 Python 模塊,因為許多現有的強化學習算法實現都支持該接口。環境的結構如圖 2 所示。環境的大部分功能都在 EnvironmentCore 類中實現。該類通過 SimulationInterface 與本地或遠程計算機上運行的仿真進程通信,在仿真中的實體和控制它們的強化學習智能體之間傳輸觀察結果和操作。SimulationInterface 還用于在計算機生成兵力軟件中加載模擬場景。
模擬與環境模塊之間的通信是通過 ZeroMQ 實現的,ZeroMQ 是一個開源、輕量級的消息傳遞中間件,可綁定多種編程語言,包括 C++ 和 Python。ZeroMQ 可以輕松實現幾種流行的消息傳遞模式,如請求-回復、發布-訂閱和推-拉。ZeroMQ使用谷歌協議緩沖區(Google protocol buffers)來指定消息,這是一種語言中立、平臺中立的結構化數據序列化機制。使用簡單的協議語言創建消息規范,然后將其編譯成各種編程語言(包括 C++ 和 Python)的源代碼。
要配置特定的環境,需要使用一些委托對象:
在空戰模擬領域的深度強化學習實驗中,我們發現了一些挑戰,這些挑戰通常不存在于許多強化學習的簡單基準環境中。狀態和行動空間的維度高且復雜,使得智能體難以學習重要的狀態特征和合適的決策策略。例如,在許多場景中,由于傳感器的限制或電子戰的影響,環境只能被部分觀測到。此外,在大多數場景中,智能體不會單獨行動,而是必須與盟友合作,同時與敵人競爭,以達到目標。為了處理長期和短期目標,可能需要在不同的時間尺度上進行決策。代表最重要目標的獎勵通常是延遲的、稀疏的,例如,如果智能體取得了勝利,就會在情景結束時給予獎勵,這樣就很難將功勞歸于正確的行動。此外,根據訓練需要,智能體的目標也有可能在不同的模擬運行中有所不同。例如,我們可能需要調整模擬的難度,以適應受訓者的熟練程度。最后,由于運行高保真模擬的計算成本很高,因此盡可能提高學習過程的樣本效率非常重要。在下面的章節中,我們將討論一些可以用來應對這些挑戰的技術。
在未來戰場上,人工合成的決策將出現在人類決策的內部和周圍。事實上,人工智能(AI)將改變人類生活的方方面面。戰爭以及人們對戰爭的看法也不例外。特別是,美國陸軍構想戰爭方式的框架和方法必須進行調整,以便將非情感智力的優勢與人類情感思維的洞察力結合起來。人工智能與人類行動者的組合有可能為軍事決策提供決定性的優勢,并代表了成功軍事行動的新型認知框架和方法。人工智能在軍事領域的應用已經開始擴散,隨之而來的作戰環境復雜性的增加已不可避免。
正如核武器結束了第二次世界大戰,并在二十世紀阻止了大國沖突的再次發生一樣,競爭者預計人工智能將在二十一世紀成為國家力量最重要的方面。這項工作的重點是美國陸軍的文化,但當然也適用于其他企業文化。如果要在未來有效地利用人工智能,而且必須這樣做才能應對競爭對手使用人工智能所帶來的幾乎必然的挑戰,那么成功地融入人工智能工具就需要對現有文化進行分析,并對未來的文化和技術發展進行可視化。美國將致力于在人工智能的軍事應用方面取得并保持主導地位。否則將承擔巨大風險,并將主動權拱手讓給積極尋求相對優勢地位的敵人。
合成有機團隊認知的兩大障礙是美陸軍領導的文化阻力和軍事決策的結構框架。首先,也是最重要的一點是,領導者必須持續觀察人工智能工具并與之互動,建立信心并接受其提高認知能力和改善決策的能力。在引入人工智能工具的同時,幾乎肯定會出現關于機器易犯錯誤或充滿敵意的說法,但必須通過展示人工智能的能力以及與人類團隊的比較,來消除和緩和對其潛在效力的懷疑。將人工智能工具視為靈丹妙藥的健康而合理的懷疑態度有可能會無益地壓倒創新和有效利用這些工具的意愿。克服這一問題需要高層領導的高度重視和下屬的最終認可。其次,這些工具的結構布局很可能會對它們如何快速體現自身價值產生重大影響。開始整合人工智能工具的一個看似自然的場所是在 CTC 環境中,以及在大型總部作戰演習的大型模擬中。最初的工具在營級以下可能用處不大,但如果納入迭代設計、軍事決策過程或聯合規劃過程,則幾乎肯定會增強營級及以上的軍事規劃。雖然在本作品中,對工具的描述主要集中在與指揮官的直接關系上,但在最初的介紹中,與參謀部的某些成員(包括執行軍官或參謀長、作戰軍官和情報軍官)建立直接關系可能會更有用。與所有軍事組織一樣,組織內個人的個性和能力必須推動系統和工具的調整,使其與需求保持平衡。
幾乎可以肯定的是,在將人工智能工具融入軍事組織的初期,一定會出現摩擦、不完善和懷疑。承認這種可能性和任務的挑戰性并不意味著沒有必要這樣做。人類歷史上幾乎所有的創新都面臨著同樣的障礙,尤其是在文化保守的大型官僚機構中進行創新時。面對國際敵對競爭對手的挑戰,美國陸軍目前正在文化和組織變革的許多戰線上奮力前行,在整合人工智能工具的斗爭中放棄陣地無異于在機械化戰爭之初加倍使用馬騎兵。在戰爭中,第二名沒有可取的獎賞,而人工智能在決策方面的潛在優勢,對那些沒有利用這一優勢的行為體來說,是一個重大優勢。現在是通過擁抱人工智能工具和改變戰爭節奏來更好地合作的時候了。
將人工智能(AI)融入陸軍后勤工作,可以徹底改變供應鏈管理、優化資源配置并增強決策能力。不過,這需要采取全面的方法,解決實施過程中的挑戰和問題。
人工智能技術的迅猛發展為將其應用于包括陸軍后勤在內的各行各業提供了新機遇。認識到人工智能的潛力,陸軍應努力大規模利用其能力,并將其應用到戰術層面,以改善供應鏈管理、資源分配和決策過程。通過與《聯合出版物 4-0:聯合后勤》、《野戰手冊 4-0:維持行動》和《陸軍條令出版物 4-0:維持》中概述的指導原則保持一致,陸軍可以在日益復雜和快速發展的世界中發展適應性強、反應迅速和有效的后勤行動。然而,將人工智能融入陸軍后勤工作會帶來一些挑戰和問題,如在自動化與人類專業技能之間找到最佳平衡點、確保強大的網絡安全、解決倫理問題以及使勞動力適應不斷變化的技術環境。本文探討了在陸軍后勤中整合人工智能的潛在優勢和劣勢,并討論了在最大限度地提高效益的同時,最大限度地降低風險和解決與實施人工智能相關的問題所需的全面方法。
人工智能在大幅提升陸軍供應鏈管理方面的變革能力毋庸置疑。正如美陸軍物資司令部前司令埃德-戴利(Ed Daly)將軍所強調的那樣,人工智能對于實現實際后勤所需的相關速度至關重要。他的愿景是將人工智能和機器學習無縫融入陸軍后勤流程的方方面面,從而為戰場上的士兵提供無與倫比的效率和及時支持。為支持這一觀點,《國際生產經濟學雜志》上發表的一項研究顯示,將人工智能融入供應鏈管理可將效率提高 20% 或更多。
人工智能分析海量數據、預測未來趨勢和資源分配需求的能力是陸軍后勤的另一大優勢。通過利用人工智能驅動的分析,陸軍可以更精確地預測士兵的需求,確保重要物資在正確的時間和地點到達目的地。此外,預測分析還能通過簡化人員和裝備分配來優化陸軍行動。陸軍后勤中的預測分析可以確定車輛部件何時需要更換,從而在故障發生前進行主動維護。這種方法可節省大量成本并提高運營安全性,減少因維護和事故而計劃外停機的可能性。此外,預測性分析還可以通過預測供應需求和驗證在正確的時間和地點是否有正確的資源來完善供應鏈管理。這一戰略可提高運營效率、縮短交付周期并提高供應鏈的可見性。
適應當地快速變化條件的能力是現代軍事行動的重要組成部分。適應性后勤和決策對于維持陸軍在復雜環境中的有效性和反應能力至關重要。人工智能通過提供實時信息、復雜的分析和先進的決策支持工具,有可能徹底改變軍事后勤的這一方面。
人工智能在適應性后勤方面的一個重要優勢是它有能力收集和分析來自各種來源的大量數據,包括傳感器、衛星和其他情報平臺。此外,人工智能還能訪問來自不同陸軍源系統的記錄系統數據,如全球指揮與控制系統-陸軍、后勤現代化計劃、港口自動化工具和運輸協調員移動信息自動化系統 II。人工智能還可以利用非陸軍系統,如全球決策支持系統和后勤功能區服務。通過這種全面的數據分析,可以做出更明智的決策,提高后勤效率。
這些信息可為作戰環境提供全面的最新情況,使指揮官能夠根據實時情報做出明智決策。通過獲取準確及時的數據,陸軍可以更有效地應對新出現的威脅,最大限度地降低風險,并抓住機遇。
除了提供實時信息外,人工智能還能通過識別人類分析人員可能不易察覺的模式和趨勢來加強決策。通過機器學習算法和先進的數據分析,人工智能系統可以發現隱藏的相關性,并產生可操作的見解,為戰略和戰術決策提供依據。例如,人工智能可以幫助預測敵人的動向,預測后勤瓶頸,或在潛在的供應鏈中斷發生之前加以識別。有了這些洞察力,指揮官就能做出更明智的決策,更有效地分配資源,并在戰場上保持競爭優勢。
人工智能還能通過自動化某些后勤規劃和決策環節,提高陸軍應對突發事件和緊急情況的能力。例如,人工智能驅動的系統可以根據不斷變化的環境條件或供應鏈的突然中斷,自動調整物資和人員的路線。通過實現這些流程的自動化,陸軍可以最大限度地減少延誤,并確保將關鍵資源運送到最需要的地方,即使在不確定和逆境中也是如此。
人工智能在適應性后勤中的另一項應用涉及使用模擬和優化技術來支持復雜多變條件下的決策。人工智能驅動的模擬模型可以幫助指揮官探索各種場景,評估潛在的行動方案,并確定實現目標的最有效策略。這可以使后勤計劃更加穩健、更具彈性,并提高任務的整體成功率。
雖然將人工智能融入陸軍后勤會帶來諸多益處,但也有合理的擔憂和潛在的弊端需要考慮。一些批評者認為,依賴人工智能可能會導致過分強調技術,而忽視人的經驗和直覺,而人的經驗和直覺在復雜和不可預測的情況下至關重要。人工智能有可能造成虛假的安全感,導致過度自信和戰略失誤。
此外,與實施人工智能技術相關的巨大成本,如基礎設施升級、軟件開發和持續維護,可能會超過潛在的好處。預算限制和相互競爭的優先事項可能會使為人工智能集成分配足夠的資源變得具有挑戰性,從而可能限制其有效性。
另一個令人擔憂的問題是人工智能系統易受網絡攻擊和敵方操縱。隨著人工智能驅動的后勤系統對陸軍行動越來越關鍵,它們也成為對手試圖破壞或損害軍事能力的高價值目標。制定強有力的網絡安全措施至關重要,但無法保證這些防御措施在應對快速發展的威脅時始終有效。
此外,還要考慮與軍事后勤中的人工智能有關的倫理問題。使用人工智能可能會導致決策偏差、缺乏透明度或意想不到的后果。必須明確界定人工智能系統行動的責任,以確保在出現錯誤或故障時能追究責任。
最后,將人工智能融入陸軍后勤可能會給后勤軍事職業專業帶來意想不到的后果。雖然特定任務的自動化可以提高效率,但也可能導致工作崗位的轉移,并需要對勞動力進行大量的再培訓。確保陸軍能夠適應這些變化并保留一支熟練的勞動力隊伍至關重要,但這需要持續的努力和投資。
雖然反駁意見中提出的擔憂不無道理,但必須指出,不應完全否定整合人工智能的潛在好處。相反,有必要采取一種平衡的方法,仔細考慮與人工智能實施相關的風險和挑戰,同時尋求利用其在陸軍后勤中的變革潛力。通過制定全面的戰略,陸軍可以解決這些問題,最大限度地發揮人工智能集成的效益。
將人工智能融入陸軍后勤工作,為徹底改變供應鏈管理、優化資源配置和加強決策過程提供了眾多機會。然而,至關重要的是要認識到并解決與實施人工智能相關的挑戰和問題,如在自動化和人類專業知識之間取得適當平衡、確保強大的網絡安全、解決道德問題以及使勞動力適應不斷變化的技術環境。
為了充分利用人工智能的潛力,陸軍應采取全面的方法,包括投資人工智能基礎設施、促進公共和私營部門之間的合作、為人員提供持續的教育和培訓,以及制定強有力的網絡安全措施。此外,必須就人工智能在軍事后勤中的道德影響保持公開對話,并建立明確的指導方針和問責結構,以確保負責任地部署人工智能。
通過采取全面的方法,陸軍可以克服與人工智能集成相關的挑戰,釋放其變革潛力,并在日益復雜和快速發展的全球安全環境中保持競爭優勢。
研究要求:
由于傳感器數量不斷增加,人工智能(AI)的應用也日益廣泛,未來作戰環境的特點將是信息量大、決策速度快。因此,陸軍指揮官及其參謀人員將需要更快地做出決策和篩選大量信息的能力。商用人工智能系統具有提供這種能力的潛力,但陸軍不能假設 "開箱即用 "的商用人工智能系統具有全部能力,因為這些系統需要針對美國陸軍的具體情況進行充分的訓練。此外,還需要開展研究,以了解目前人工智能在陸軍中的應用情況。總的來說,人工智能往往擅長于主要通過模式識別來解決的任務,以及可以通過任務數據進行預測的任務,如圖像識別、醫療診斷和轉錄。然而,人工智能能否用于提高美國陸軍的信息收集效率,目前還不得而知。因此,在當前的研究中,探討了以下問題: 人工智能能否用于提高美國陸軍任務式指揮流程中的信息收集效率?
方法:
為了回答研究問題,使用了一個商業人工智能應用系統,它反映了陸軍任務式指揮人工智能應用原型的首次開發工作。在這項研究工作中,比較了這一適合陸軍的人工智能系統和其他兩種信息收集方法在信息收集任務中的表現:一種是傳統的信息收集方法(搜索計算機文件夾中的 PDF 文件),另一種是非適合陸軍的人工智能系統。針對軍隊的系統使用軍隊相關知識來幫助搜索(例如,它知道 "MDMP "等同于 "軍事決策過程"),而非針對軍隊的系統則沒有。在以下方面對三種搜索方法進行了比較 1) 參與者找到準確搜索結果所需的時間;2) 參與者搜索結果的準確性;3) 參與者對搜索結果的信心程度;4) 參與者使用系統的工作量感知;5) 參與者對系統可用性的感知。
研究結果:
與使用傳統搜索方法相比,學員在使用人工智能系統進行搜索時既沒有更快,也沒有更準確。在使用人工智能系統時,參與者對搜索結果的信心也沒有傳統方法高。不過,在使用軍隊定制的人工智能系統而不是非軍隊定制的系統時,參與者的搜索速度更快,但準確性也更低。最后,不同搜索方法的參與者對工作量和可用性的感知沒有明顯差異。
利用和傳播研究結果:
這項研究是確定人工智能系統對信息收集效率影響的第一步。總體而言,研究結果表明,人工智能系統可能不會大幅提高美國陸軍任務式指揮流程的信息收集效率,至少不會立即提高。雖然這項研究的重點是在受控實驗室中執行一項無害的任務(即針對戰術情況尋找條令解決方案),但未來計劃中的用途不會像現在這樣無害,這表明未來的研究需要對假設進行檢驗。在對人工智能進行投資的同時,還應在培訓和研究方面進行投資,以充分發揮人工智能的優勢并降低風險。假定人工智能系統是靈丹妙藥并非明智之舉,事實上,這項研究表明,人工智能系統需要經過全面審查。
現代戰爭越來越多地在信息環境中進行,通過開源媒體使用欺騙和影響技術。北約國家的政府、學術界和工業界已經通過開發各種創新的計算方法,從大量的媒體內容中提取、處理、分析和可視化有意義的信息來做出回應。然而,目前仍不清楚哪些(組合)工具能滿足軍事分析人員和操作人員的要求,以及是否有些要求仍未得到滿足。為此,加拿大DRDC和荷蘭TNO啟動了一項合作,以開發一個標準化和多方位的媒體分析需求圖。本文介紹了該合作的第一階段所完成的工作。具體來說, (1) 開發了一個可能的媒體分析工具功能框架;(2) 收集了CAN和NLD利益相關者的當前用戶需求;以及(3) 分析了差距,以顯示哪些用戶需求可以通過哪些功能來滿足。這個項目直接建立在SAS-142的基礎上,通過使用互聯網開發科學和技術評估框架(FIESTA)。本文說明了FIESTA在兩個突出的媒體分析能力中的應用:(1)情緒分析和(2)敘事分析。研究結果表明,盡管這些能力有一些獨特的功能,但它們有非常多的共同功能。因此,研究和開發工作可以通過專注于獨特(新穎)的功能,同時回收多用途的功能而得到優化。通過將FIESTA應用于多種媒體分析能力并與多個北約國家合作,這些效率的提高可以成倍增加。
圖4. 人工智能對目標定位的增強:人工智能可以通過搜索目標并在發現后發出警報來增強動態目標定位周期。
開發和使用新的軍事技術是一個軍事專業人員工作的一部分。事實上,軍事歷史在很大程度上是一個技術革新的故事,士兵需要學習如何操作新系統。因此,關于整合人工智能的很多東西并不新鮮。就像坦克、飛機甚至弩一樣,隨著時間的推移,士兵們學會了使用和運用技術,工業界學會了以足夠的數量和質量生產技術,高級領導人學會了運用技術來實現戰略效果。如前所述,人工智能技術與它們的顛覆性“前輩”之間的區別在于,前者有能力改善廣泛的軍事武器、系統和應用。由于這種潛在的普遍性,幾乎所有的士兵都必須在某種程度上變得熟練,才能有效地和道德地運用AI技術。隨著這項技術在應用上的擴展,戰爭將像管理暴力一樣管理數據。
這種普遍性也提出了關于人類發展和人才管理的問題。盡管培訓計劃最終會培養出更多的知識型士兵,人事系統也會提高管理士兵的能力,但軍警人員能夠獲得知識和技能的限制仍然存在,特別是在作戰層面。盡管討論的目的不是要建立嚴格的指導方針,但討論確定了士兵需要獲得的許多知識。例如,士兵將需要知道如何策劃和培訓數據庫,而該數據庫對他們正在執行的任務有著重要作用。這樣做需要確保數據的準確、完整、一致和及時。使用這些數據需要熟練應用推薦模型卡中描述的條件,而熟練的操作有助于確保算法以有效和道德的方式執行。
當然,信任不能僅靠政策和程序來保證。指揮官、參謀員和操作員需要知道他們被信任做什么,以及他們信任系統做什么。指揮官、參謀員和操作員信任人工智能系統來識別合法目標,并避免識別非法目標。參與這一過程的人必須在使用這些信息時,既需要擊敗敵人,又必須避免友軍和非戰斗人員的傷亡。要找到這種平衡,就需要判斷人應該承擔多大的風險。
只要參與流程的人類能夠與系統進行有效的互動,由人工智能賦能的系統就能促進找到這種平衡。在將人類控制整合到機器流程中時,人們經常被迫在控制和速度之間做出選擇:強加的人類控制越多,系統的運行速度就越慢。但本研究發現這種兩難的局面是錯誤的。盡管在某些情況下,在人的控制和速度之間進行平衡可能是必要的,但如果系統要最佳地運作,人的輸入是必要的。
實現最佳性能首先要求指揮官確保參謀和操作人員了解模型能力,理解數據質量的重要性,以及洞悉模型在作戰環境中的表現。盡管它可能不會使系統更加精確或準確,但實現這些任務可使系統能夠更好地對輸出進行概率分配。第二,指揮官需要確定對任務、友軍戰斗人員和敵方非戰斗人員的風險有多大才合適。這一決定很復雜,其中關鍵任務可能是需要容忍更多的友軍和非戰斗人員傷亡。同樣,如果非戰斗人員的密度較低,即使任務不那么緊急,也可以容忍較高的風險。尋找這種平衡將是人類的工作。
但在前面描述的模糊邏輯控制器的幫助下,指揮官可以更好地確定什么時候可以信任一個人工智能系統在沒有人類監督的情況下執行一些目標定位步驟。此外,可以通過構建交互的邏輯,以找到多種不同的人機互動配置,確保系統的最佳使用,同時避免不必要的傷害。在LSCO期間,讓指揮官在需要時選擇智能和負責任地加快目標定位過程將是至關重要的,本報告中提出的設計實現了這一目標。這一成就在未來尤其重要,因為為了保護部隊并實現任務目標,指揮官將面臨大量時間敏感目標,及面臨承擔更多風險的操作條件。
在培養具有正確技能的足夠數量士兵以充分利用人工智能技術方面,仍有大量的工作。目前的人才管理計劃尚未達到管理這一挑戰的要求,盡管多個有前途的計劃準備最終滿足需求。然而,在大多數情況下,這些計劃都是為了滿足機構層面的要求,在機構層面上做出全軍采買人工智能和相關技術的決策。但是,這些技能將如何滲透到作戰陸軍,尚不清楚。
盡管人工智能在目標定位中的使用并不違反當前的戰爭法,但它確實引起了一些道德倫理問題。在所討論的目標定位系統背景下,這些倫理問題中最主要的是問責制差距和自動化偏見。第一個問題對于回答核心問題至關重要,“指揮官在什么基礎上可以信任人工智能系統,從而使指揮官可以對這些系統的使用負責?”自動化偏見和數據衛生與問責制差距有關,因為當這些問題存在時,它們會破壞指揮官可能希望實施的有意義的人類控制措施。指揮官可以通過以下方式縮小問責差距:首先,確保人員受到適當的教育、技能和培訓,以整理相關數據;其次,確保指揮官允許的風險,準確地反映完成任務與保護友軍士兵和非戰斗人員之間的平衡需求。指揮官還可以通過在機器需要更多監督時向參與該過程的人類發出信號來減少自動化偏見的機會及其潛在影響。
作為一個專業人員,不僅僅意味著要提供服務,還要在出問題時承擔責任。專業人員還必須了解各種利益相關者,包括公眾和政府及私營部門實體,如何與本行業互動和競爭。鑒于這些技術的潛力,軍事專業人員必須首先學會在技術及其應用的發展中管理預期。由于這種演變影響到專業工作的特點,軍事專業人員還必須注意專業以外的人如何重視、獎勵和支持這項工作。因此,隨著美軍繼續將人工智能和數據技術整合到各種行動中,對其專業性的考驗將在于擁有專業知識的能力,以及建立能夠繼續發展、維護和認證這種專業知識的機構,這些機構既能滿足美國人民的國防需求,又能反映他們的價值觀。
在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。
在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。
本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。