這本書的重點是面向深度不確定性下關于決策的理論和實踐的相關工具和方法。它探討了在深度不確定性下支持戰略計劃設計的方法和工具,以及它們在現實世界中的測試,包括在實踐中使用它們的障礙和促成因素。這本書擴展了傳統的方法和工具,包括與手頭的問題相關的行為和網絡的分析。它還展示了如何利用應用過程中獲得的經驗教訓來改進設計過程中使用的方法和工具。這本書提供了識別和運用適當的方法和工具來設計計劃的指導,以及在現實世界中實施這些計劃的建議。對于決策者和實踐者,這本書包括現實的例子和實用的指導方針,應該幫助他們理解在深度不確定性下的決策是什么,以及它可能如何幫助他們。
深度不確定性下的決策: 從理論到實踐分為四個部分。第一部分介紹了在深度不確定性下設計策略計劃的五種方法: 穩健決策、動態適應規劃、動態適應策略路徑、信息缺口決策理論和工程選項分析。每種方法都是根據其理論基礎、使用方法時要遵循的方法學步驟、最新的方法學見解和改進的挑戰來制定的。在第二部分中,將介紹每一種方法的應用。基于最近的案例研究,運用每種方法的實際意義被深入討論。第三部分基于對真實世界案例的理解,重點關注在真實世界的環境中使用這些方法和工具。第四部分包含結論和綜合可以為設計、應用和執行深度不確定性下的策略計劃而得出的教訓,以及對未來工作的建議。
強化學習定義了僅通過行動和觀察來學習做出好的決策的代理所面臨的問題。為了成為有效的問題解決器,這些代理必須能有效地探索廣闊的世界,從延遲的反饋中分配信用,并歸納出新的經驗,同時要利用有限的數據、計算資源和感知帶寬。抽象對所有這些努力都是必要的。通過抽象,代理可以形成其環境的簡潔模型,以支持一個理性的、自適應的決策者所需要的許多實踐。在這篇論文中,我提出了強化學習中的抽象理論。首先,我提出了執行抽象過程的函數的三個要求:它們應該1)保持近似最優行為的表示,2) 有效地被學習和構造,3) 更低的規劃或學習時間。然后,我提出了一套新的算法和分析,闡明了代理如何根據這些需求學習抽象。總的來說,這些結果提供了一條通向發現和使用抽象的部分路徑,將有效強化學習的復雜性降到最低。
強化學習問題如下。RL代理通過以下兩個離散步驟的無限重復與環境進行交互:
論文余下組織如下: 第1部分。在第2章中,我提供了關于RL(2.1節)以及狀態抽象(2.2節)和動作抽象(2.3節)的必要背景知識。
第2部分。下一部分將專注于狀態抽象。我提出了新的算法和三個緊密相連的分析集,每一個目標是發現滿足引入的需求的狀態抽象。在第3章中,我開發了一個形式化的框架來推理狀態抽象,以保持近似最優的行為。這個框架由定理3.1總結,它強調了值保持狀態抽象的四個充分條件。然后,在第4章中,我將這一分析擴展到終身RL設置,在終身RL設置中,代理必須不斷地與不同的任務交互并解決不同的任務。本章的主要觀點是介紹了用于終身學習設置的PAC狀態抽象,以及澄清如何有效計算它們的結果。定理4.4說明了保證這些抽象保持良好行為的意義,定理4.5說明了有多少以前已解決的任務足以計算PAC狀態抽象。我著重介紹了模擬實驗的結果,這些結果說明了所介紹的狀態抽象類型在加速學習和計劃方面的效用。最后,第五章介紹了信息論工具對狀態抽象的作用。我提出了狀態抽象和率失真理論[283,43]和信息瓶頸方法[318]之間的緊密聯系,并利用這種聯系設計新的算法,以高效地構建狀態抽象,優雅地在壓縮和良好行為表示之間進行權衡。我以各種方式擴展了這個算法框架,說明了它發現狀態抽象的能力,這些狀態抽象提供了良好行為的樣本高效學習。
第3部分。然后我轉向行動抽象。在第6章中,我展示了Jinnai等人的分析[144],研究了尋找盡可能快地做出計劃的抽象動作的問題——主要結果表明,這個問題通常是NP困難的(在適當簡化的假設下),甚至在多項式時間內很難近似。然后,在第7章中,我解決了在規劃中伴隨高層次行為構建預測模型的問題。這樣的模型使代理能夠估計在給定狀態下執行行為的結果。在本章中,我將介紹并分析一個用于這些高級行為的新模型,并證明在溫和的假設下,這個簡單的替代仍然是有用的。我提供的經驗證據表明,新的預測模型可以作為其更復雜的對等物的適當替代者。最后,在第8章中,我探討了抽象行動改善探索過程的潛力。我描述了Jinnai等人開發的一種算法[145],該算法基于構建可以輕松到達環境所有部分的抽象行動的概念,并證明該算法可以加速對基準任務的探索。
第4部分。最后,我轉向狀態動作抽象的聯合過程。在第9章中,我介紹了一個將狀態和動作抽象結合在一起的簡單機制。使用這個方案,然后我證明了哪些狀態和動作抽象的組合可以在任何有限的MDP中保持良好的行為策略的表示,定理9.1總結了這一點。接下來,我將研究這些聯合抽象的反復應用,作為構建分層抽象的機制。在對層次結構和底層狀態動作抽象的溫和假設下,我證明了這些層次結構也可以保持全局近最優行為策略的表示,如定理9.3所述。然后,我將在第十章中總結我的思考和今后的方向。
總的來說,這些結果闡明了強化學習的抽象理論。圖1.4展示了本文的可視化概述。
人工智能(AI)為改善私人和公共生活提供了很多機會,以自動化的方式在大型數據中發現模式和結構是數據科學的核心組件,目前驅動著計算生物學、法律和金融等不同領域的應用發展。然而,這種高度積極的影響也伴隨著重大的挑戰:我們如何理解這些系統所建議的決策,以便我們能夠信任它們?在這個報告中,我們特別關注數據驅動的方法——特別是機器學習(ML)和模式識別模型——以便調查和提取結果和文獻觀察。通過注意到ML模型越來越多地部署在廣泛的業務中,可以特別理解本報告的目的。然而,隨著方法的日益普及和復雜性,業務涉眾對模型的缺陷、特定數據的偏差等越來越關注。類似地,數據科學從業者通常不知道來自學術文獻的方法,或者可能很難理解不同方法之間的差異,所以最終使用行業標準,比如SHAP。在這里,我們進行了一項調查,以幫助行業從業者(以及更廣泛的數據科學家)更好地理解可解釋機器學習領域,并應用正確的工具。我們后面的章節將圍繞一位公認的數據科學家展開敘述,并討論她如何通過提出正確的問題來解釋模型。
機器學習簡明指南,不可錯過!
A Machine Learning Primer
亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:
監督學習
機器學習實踐
無監督學習
深度學習
這是第一本介紹隨機過程貝葉斯推理程序的書。貝葉斯方法有明顯的優勢(包括對先驗信息的最佳利用)。最初,這本書以貝葉斯推理的簡要回顧開始,并使用了許多與隨機過程分析相關的例子,包括四種主要類型,即離散時間和離散狀態空間以及連續時間和連續狀態空間。然后介紹了理解隨機過程所必需的要素,接著是專門用于此類過程的貝葉斯分析的章節。重要的是,這一章專門討論隨機過程中的基本概念。本文詳細描述了離散時間馬爾可夫鏈、馬爾可夫跳躍過程、常規過程(如布朗運動和奧恩斯坦-烏倫貝克過程)、傳統時間序列以及點過程和空間過程的貝葉斯推理(估計、檢驗假設和預測)。書中著重強調了許多來自生物學和其他科學學科的例子。為了分析隨機過程,它將使用R和WinBUGS。
前言 在這本書中,我們從圖形模型的基礎知識、它們的類型、為什么使用它們以及它們解決了什么類型的問題開始。然后我們在圖形模型的上下文中探索子問題,例如它們的表示、構建它們、學習它們的結構和參數,以及使用它們回答我們的推理查詢。
這本書試圖提供足夠的理論信息,然后使用代碼示例窺視幕后,以了解一些算法是如何實現的。代碼示例還提供了一個方便的模板,用于構建圖形模型和回答概率查詢。在文獻中描述的許多種類的圖形模型中,這本書主要關注離散貝葉斯網絡,偶爾也有來自馬爾科夫網絡的例子。
內容概述
第一章:概率論,涵蓋了理解圖形模型所需的概率論的概念。
第2章:有向圖形模型,提供了關于貝葉斯網絡的信息,他們的屬性相關的獨立性,條件獨立性,和D分離。本章使用代碼片段加載貝葉斯網絡并理解其獨立性。
第三章:無向圖模型,介紹了馬爾可夫網絡的性質,馬爾可夫網絡與貝葉斯網絡的區別,以及馬爾可夫網絡的獨立性。
第四章:結構學習,涵蓋了使用數據集來推斷貝葉斯網絡結構的多種方法。我們還學習了結構學習的計算復雜性,并在本章使用代碼片段來學習抽樣數據集中給出的結構。
第5章:參數學習,介紹了參數學習的最大似然法和貝葉斯方法。
第6章:使用圖形模型的精確推理,解釋了精確推理的變量消除算法,并探索了使用相同算法回答我們的推理查詢的代碼片段。
第7章:近似推理方法,探討了網絡太大而無法進行精確推理的近似推理。我們還將通過在馬爾科夫網絡上使用循環信念傳播運行近似推論的代碼樣本。
目錄
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。
這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。
讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。
這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。
這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。
//link.springer.com/book/10.1007/978-3-319-63913-0#about
機器學習是計算機科學中增長最快的領域之一,具有深遠的應用。本書的目的是介紹機器學習,以及它所提供的算法范例。本書對機器學習的基本原理和將這些原理轉化為實際算法的數學推導提供了理論解釋。在介紹了基礎知識之后,這本書涵蓋了以前教科書沒有涉及到的一系列廣泛的中心主題。這些包括討論學習的計算復雜性和凸性和穩定性的概念;重要的算法范例包括隨機梯度下降、神經網絡和結構化輸出學習;以及新興的理論概念,如PAC-Bayes方法和基于壓縮的界限。本文面向高級本科生或剛畢業的學生,使統計學、計算機科學、數學和工程學領域的學生和非專業讀者都能接觸到機器學習的基本原理和算法。
//www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html
概述
機器學習是指自動檢測數據中有意義的模式。在過去的幾十年里,它已經成為幾乎所有需要從大數據集中提取信息的任務的通用工具。我們被一種基于機器學習的技術包圍著:搜索引擎學習如何給我們帶來最好的結果(同時投放有利可圖的廣告),反垃圾郵件軟件學習如何過濾我們的電子郵件信息,信用卡交易被一種學習如何偵測欺詐的軟件保護著。數碼相機學會識別人臉,智能手機上的智能個人輔助應用學會識別語音指令。汽車配備了使用機器學習算法構建的事故預防系統。機器學習還廣泛應用于生物信息學、醫學和天文學等科學領域。
所有這些應用程序的一個共同特征是,與計算機的更傳統使用相比,在這些情況下,由于需要檢測的模式的復雜性,人類程序員無法提供關于這些任務應該如何執行的明確、詳細的規范。以智慧生物為例,我們的許多技能都是通過學習我們的經驗(而不是遵循給我們的明確指示)而獲得或改進的。機器學習工具關注的是賦予程序“學習”和適應的能力。
這本書的第一個目標是提供一個嚴格的,但易于遵循,介紹機器學習的主要概念: 什么是機器學習?
本書的第二個目標是介紹幾種關鍵的機器學習算法。我們選擇展示的算法一方面在實踐中得到了成功應用,另一方面提供了廣泛的不同的學習技術。此外,我們特別關注適合大規模學習的算法(又稱“大數據”),因為近年來,我們的世界變得越來越“數字化”,可用于學習的數據量也在急劇增加。因此,在許多應用中數據量大,計算時間是主要瓶頸。因此,我們明確地量化了學習給定概念所需的數據量和計算時間。
目錄:
Part I: Foundations
Part II: From Theory to Algorithms
Part III: Additional Learning Models
Part IV: Advanced Theory
Appendices
在線推薦系統幫助用戶找到電影、工作、餐館——甚至愛情!這是一種將統計數據、人口統計數據和查詢條件相結合以獲得令他們滿意的結果的藝術。學習建立一個推薦系統的正確方法:它可以使你的應用成功或失敗!
對這項技術
推薦系統無處不在,幫助你找到從電影到工作,從餐館到醫院,甚至是愛情的一切。利用行為和人口統計數據,這些系統可以預測用戶在特定時間最感興趣的內容,從而得到高質量、有序、個性化的建議。推薦系統實際上是保持網站內容最新、有用和有趣的必要手段。
關于這本書
實用推薦系統解釋如何推薦系統的工作,并顯示如何創建和應用它們為您的網站。在介紹了基礎知識之后,您將看到如何收集用戶數據并生成個性化的推薦。您將學習如何使用最流行的推薦算法,并在Amazon和Netflix等網站上看到它們的實例。最后,這本書涵蓋了規模問題和其他問題,你會遇到的網站成長。
里面有什么