多旋翼小型無人駕駛航空系統(sUAS),通常被稱為無人機,近年來已經充斥了商業市場[1]。雖然這些sUAS的技術能力令人印象深刻,但在自主行為領域仍然存在能力差距。完全自主的無人機還沒有強大的商業驅動力,因為大多數商業飛行員都希望獲得駕駛無人機的經驗。即使在安全行動中,目前的無人機也提供了適度的自主性,例如基本的避碰和自主起飛和著陸[2],但市場上還沒有一種無人機能夠為各種任務區域提供完全自主的功能。美國防部(DoD)、國土安全部(DHS)和地方執法機構將受益于在一些利基任務領域擁有完全自主能力的sUAS,包括搜索和救援監視、遠程通信中繼、遠程目標就位、以及對敵對無人機系統(UAS)的自主追擊等(見圖1)。
圖1. 國土保護自主無人機任務。
在“追逐者”項目的第一年,我們組裝了一個由S1000直升機平臺、機載NVIDIA Jetson Xavier GPU和econ 4k e-CAM130CUXVR相機組成的初始測試平臺(見圖2)。我們成功地演示了一個閉環、機載、基于自主計算機視覺的檢測、跟蹤和控制系統,該系統能夠在飛行中跟蹤另一個sUAS。
在第一年演示成功的基礎上,在第二年,我們將重點從空中追擊擴展到包括執行鏈的啟動,包括從監視提示自動發射,飛到提示點,以及在沒有飛行更新提示的情況下有效搜索空間。為了識別跟蹤無人機的雷達航跡,只發送入侵無人機的線索,我們還開發了GPS/雷達航跡關聯算法。
戰術戰區(TBA)內的平臺和射彈數量急劇增加。友軍和敵軍的航空系統不僅在數量上不斷增加,而且大小不一,從微型無人機到大型飛機,它們的飛行速度也從非常慢到比聲音快許多倍。民用航線也在成倍增加,未來空中導航系統(FANS)將使航線更加靈活。空域是有限的資源。因此,當務之急是進行適當的控制,以實現高效運行、行動自由、安全和防止自相殘殺。空域管制(ASC)是指對不同用戶使用空域的管理。從軍事行動的角度來看,空域管制的目標是在不增加不適當限制的情況下,最大限度地提高作戰行動的效率,并將對任何部門能力的不利影響降至最低。空域管制、空中交通管制和地區防空部隊之間必須密切協調,以平衡風險和有效防空的要求。詳細的交戰程序提供了最大的靈活性和反應能力。
沖突期間,TBA地區的空中活動極為密集。友軍和敵軍的飛機都在過境。水平和垂直空域不僅被完全覆蓋,而且在時間和空間上的變化也是動態的。 大多數飛行是根據不斷變化的戰術形勢在很短時間內啟動的。有許多無人駕駛航空系統(UAS)。高速中遠程炮彈和各種導彈也占據著空域。地基防空武器處于緊急待命狀態,有些武器在靠近戰區前沿(FEBA)的偏遠地點運行。盡管在時間和空間上有一些限制和規定,但必須允許民用空中行動繼續進行。因此,需要更快地及時共享信息。必須明確指定機構進行直接和程序控制。
圖:阿卡什地對空導彈系統。
空天指揮和控制要求對各軍事要素執行的無數行動進行統一控制。它需要合格的人員、信息和支持結構來建立一個全面的作戰空間圖。其他戰場要素提供規劃資源。印度空軍(IAF)的戰術航空部隊與印度陸軍和海軍一起支持各軍種之間的協調。有幾種類型的控制可以單獨使用,也可以結合使用,以達到理想的作戰自主程度。控制可以是對飛行中的飛機或地對空武器單元進行近距離控制,在規定時間內與目標交戰/脫離接觸。控制也可以是程序性的。
履行空中管制職能的機構和個人包括防空控制中心、戰術空中作業中心(TAC)和空軍海上部隊(MEAF)。他們使用雷達和安全通信。指定的控制人員和協調人員,如戰術空中協調人員(機載)、突擊支援協調人員、前方空中控制人員(機載和地面)、空中交通控制人員、雷達控制人員、信息通信技術管理人員、飛機飛行領隊和地對空武器部隊。
最重要的是整合各要素。控制分為積極控制和程序控制。積極控制依賴于實時識別和跟蹤。它使用雷達、敵我識別(IFF)詢問器和接收器、信標、計算機、數字數據鏈和通信設備。所有這些設施都會受到攻擊和破壞。它們可能受到視線覆蓋、電子干擾和有限通信的限制。因此,它們需要備份程序來彌補部分或全部系統的故障。程序控制依賴于先前商定和頒布的命令和程序。這些命令和程序包括ASC措施、火力支援協調措施和防空控制措施。程序控制按空間和時間劃分空域,使用武器控制狀態來管理航空作業。它不易受到電子和物理攻擊的干擾,并能確保在不利環境條件下的連續作業。同時,它也可作為失去積極控制時的備用系統。通常,程序控制的實施是為了彌補積極控制的局限性。
重要資產或區域的防空通常圍繞同心層系統展開。 外層通常由配備有源電子掃描陣列(AESA)雷達的戰斗機和由AEW&C支持的反坦克導彈組合構成。 如果攻擊者能夠穿透這一層,下一層將由地對空導彈覆蓋,其中一些導彈的射程超過150公里。S-400 "Triumf "級導彈系列覆蓋不同的高度和射程帶,可摧毀400公里以內的目標。 其他短程導彈的射程約為30-50公里。 最后,還有近程武器系統(CIWS)、超短程反導系統(VSHORADS)導彈、便攜式導彈和每分鐘發射數千發炮彈的雷達控制高射炮。
圖:典型的分層防空
地基高、中功率監視雷達、系留氣球雷達、導彈捕獲和制導雷達、戰術戰場機動雷達和艦載雷達都是地面傳感器網絡的組成部分。這些雷達可探測不同級別的威脅。有些是可移動的。許多雷達是三維的或提供全景圖像。它們具有ECCM,可防止干擾。還有支持反彈道導彈作戰的超視距雷達。為了應對隱形飛機的威脅,各國正在開發超遠程L、UHF和VHF波長雷達。 空中交通管制(ATC)雷達和管制員在空域管理中發揮著重要作用。
機載早期預警和控制(AEW&C)系統是一種機載雷達糾察系統,旨在遠距離探測飛機、艦船和車輛,并通過指揮戰斗機和攻擊機打擊來執行戰區和空中交戰的指揮和控制。 由于其機動性,雖然會成為敵方戰斗機和導彈的攻擊目標,但更不容易遭到反擊。此外,還有大量的直升機AEW系統。
圖:Phalcon預警機。
空中管制點是在地面上為機組人員前往目標指定的路線。這些控制點必須易于從空中識別,并支持地面戰術計劃。這些計劃通過每日命令頒布。空中控制點可分別指定為進入/退出、途中、軌道/停靠、聯絡點、會合、出口控制、滲透、進入和返回。這些程序允許友軍飛機利用可預測的飛行路徑在整個TBA內安全移動。軍種間的航空作業可以通過協調高度來建立緩沖區。
火力支援協調措施允許指揮官開放戰斗空間區域以快速打擊目標或限制和控制火力。允許性火力支援有利于攻擊目標。限制性火力支援措施和禁火區可保障其自身空中平臺的安全。防空行動區及其上方空域是通常優先考慮友軍飛機或地對空武器進行防空作戰的區域。
防空識別區(ADIZ)由規定尺寸的空域組成,需要對空中飛行器進行隨時識別、定位和控制。通常,防空識別區設立在主權國家邊界或作戰區域內。它確保最大限度地減少防空行動和其他行動之間的相互干擾。它可能包括一個或多個防空區、ADIZ或火力傘。
圖:印度ADIZ
武器交戰區(WEZ)是通常由特定武器系統負責交戰的空域。這些區域包括戰斗機交戰區(FEZ)、各類導彈交戰區(MEZ)和聯合交戰區(JEZ)。WEZ的大小取決于特定武器系統的能力。當戰斗機相對于地基系統具有明顯的作戰優勢時,通常會宣布FEZ。地對空導彈系統不允許向FEZ內發射武器,除非目標被確認為敵對目標,由上級當局確認和/或指定,或為自衛而發射。在MEZ內,交戰責任通常由導彈承擔。MEZ分為高空MEZ和低空MEZ。在JEZ中,同時使用多種防空武器系統,需要正確區分友機、中立機和敵機。基地防空區(BADZ)是在空軍基地周圍建立的短程防空武器系統。重要區域是由防空部隊保衛的指定區域或設施。重要區域包括機場、指揮和控制系統、信號單位、GCI單位和其他一些指揮要素。發射控制(EMCON)管理電磁、聲波和其他發射器的使用,以優化指揮和控制能力。EMCON還有助于執行軍事欺騙計劃。
圖:武器交戰區
努力實現資產的分散控制,以便最大限度地靈活攻擊或反擊飛機和導彈威脅。集中控制是指控制機構指揮目標交戰。即使在集中控制期間,自衛權也從未被剝奪。在分散控制期間,控制機構進行監控,以防止同時攻擊同一敵對威脅。分散控制增加了在高密度環境中與敵機交戰的機會。
ASC機構之間必須密切協調。控制區域和功能必須明確。數據鏈通信使這一過程成為可能。及時、有針對性和融合的態勢感知至關重要。此外,還需要評估對手的能力和弱點。防空指揮官負責早期預警,發射戰備平臺(ORP)飛機或調用友軍機載AD飛機應對威脅。需要積極的空域控制。必須為防空反導(DCA)任務提供近距離控制、廣播、戰術或數據鏈控制,并為地對空武器部隊分配目標。預先計劃的空中支援行動和空中偵察任務也需要支持。操作人員應能夠識別電子戰行動,并使用主動和被動措施采取行動。
圖:典型的分層防空。
ASC由雷達、飛機轉發器、飛行數據處理系統、用于全自動系統的特殊軟件以及沖突警報和可能的矢量解決方案算法提供支持。區域穿透警報用于防止進入禁區。操作數據鏈(ODL)允許平臺和地面系統之間進行數字信息傳遞。屏幕內容記錄允許更好的重建和事后分析。
空域控制命令提供了空中任務周期協調措施的細節,包括火力支援協調措施、防空區域和空中交通區域以及其他空域信息。 作戰層面的空域沖突消除通常在空中作戰中心內進行。戰術層面的消除沖突由空管和雷達管制員負責。應對降級的C2環境。空中部分指揮官必須確保水面指揮官列出的關鍵資產得到保護。火力支援協調應允許指揮官快速打擊目標。空中和地面部隊必須使用相同的地理參考網格。 聯合網絡對各組成部分的整合至關重要。 在進入或撤出戰區時,與民用航空行動的協調非常重要。防止空中平臺/物體之間的碰撞是一項任務。
圖:戰術戰區。
在TBA中,雙方的空中力量都試圖與對手的地面部隊交戰。印度空軍將支持印度陸軍。也會有許多聯合或特別行動。印度武裝部隊之間的領域劃分明確。 陸軍負責水面協調,海軍負責海上協調,空軍負責空中協調。 國家防空由印度空軍負責。 陸軍和海軍整體資產的防空由其各自負責。 大的空中態勢圖由以色列空軍利用自己的雷達、民用雷達和其他軍種的雷達繪制。這種情況在戰術空中管制(TAC)一級提供給陸軍,在空軍海上部分(MEAF)一級提供給海軍。 所有空中活動的防空許可由以色列空軍負責。 在一小塊空域內的低空飛行的陸軍航空資產不需要任何許可,但必須以數字方式通報飛行信息。同樣,艦艇間的海軍直升機飛行也由海軍管理。 所有在ADIZ內的飛行都需要IAF防空許可。ADIZ以外的海軍飛行由海軍管理。印度空軍攻擊機和支援機在ADIZ外支援印度海軍的飛行由印度海軍協調。印度空軍下達的任何 "不開火 "命令都將是在小范圍內的短期命令,以便不妨礙陸軍/海軍的全面行動。印度空軍飛機通過TBA的低空航線通常是通過共同了解的點。 作為前方空中管制員(FAC)的以色列空軍機組人員也在戰術層面為ASC提供支持。 印度空軍和陸軍在軍團總部和司令部一級有一個接口,以解決日常問題并共同監測戰斗進展。 同樣,空軍人員也與印度海軍一起行動。
為執行上述任務,各級指揮部(軍/師/旅等)都有詳細的安排。空軍是空域的最大使用者,是ASC的最高控制者。允許或拒絕用戶使用空域的指令既有長期指令(高度帶、時間段、飛行/禁飛區等),也有適用于用戶某一時點的動態即時指令。IAF目前正在通過其綜合空中指揮與控制系統(IACCS)統一所有ASC功能。
圖:綜合空中指揮與控制系統(IACCS)。
通過空軍和民航總局(DGCA)之間詳細的制度化合作,ASC組織也將民航納入其范圍。下一代航空運輸系統(NAS)將改變目前的空域,并通過數據鏈傳輸GPS定位來縮短航線。在冷戰期間以及最近在沖突地區附近發生了多起客機被防空飛機和導彈擊中的事件。任何空域管理都必須確保民用飛機的安全。空中恐怖分子現在是一個真正的威脅。恐怖分子正在獲取攜帶武器的無人機或地對地導彈。 恐怖分子在選擇襲擊時間和地點方面具有優勢。 雖然對這種威脅的反應是常規的,但必須對防空程序進行調整,以便在短時間內應對可能出現的突襲飛機。
圖:在空中交通管制(ATC)的印度空軍。
當今的太空衛星支持各種光學、紅外(IR)和雷達傳感器,用于監視、測繪、通信、數據聯網、瞄準和導航。地面行動對太空的依賴程度已達到驚人的程度。 競爭對手將試圖摧毀這些系統。衛星數量與日俱增。 高超音速客機穿越近太空的日子已經不遠了。 太空和大氣層的分界線正在變薄。這為ASC增添了新的內容。以定向能激光或神風衛星為形式的太空武器化是可能的。地面AD和ASC利用衛星執行任務。
圖:天基資產
現在,所有行動都以網絡為中心,各平臺通過電子方式相互對話并共享關鍵數據。 態勢感知(SA)是通過網絡傳感器輸入來實現的。 每個軍種都有自己的安全專用網絡。 此外,還有用于共享共同領域信息的跨軍種網絡。 因此,網絡戰的一個主要部分將是攻擊對手的監視和控制系統,這將帶來災難性后果。網絡戰爭不需要龐大的軍隊。只需一名操作員用一臺簡單的電腦就能發動戰爭。 攻擊的時間和地點可以選擇。任何地面防空網絡和ASC要想取得成功,就必須抵御網絡攻擊。
圖:互聯互通和網絡威脅
無人機系統(UAS)的數量正在增加。它們現在承擔著各種作戰任務,是ASC面臨的新挑戰。它們全天候運行。有人駕駛飛行器和無人駕駛飛行器的聯合已經成為現實。印度武裝部隊正在大量引進無人機系統。任何ASC都必須考慮到無人機系統的運行。無人機系統的監管問題是另一個挑戰。印度民航部已經公布了新的2021年無人機自由化規則。無人機根據重量進行了分類。小型無人機在白天只能在目視視線范圍內飛行,高度在200英尺以下。 大型商用無人機將由民航總局根據國際民用航空組織(ICAO)的規定進行注冊,并分配一個唯一識別碼(UIN)。 將頒發無人機操作員許可證(UAOP)。 所有遠程飛行員必須接受必要的培訓。無人機必須配備RFID/SIM,具有返航選項和防撞燈。 機場和其他敏感區域附近的無人機操作限制將不時通知。
圖:無人機系統的滲透。
部分高速公路正在清理,以便在行動或緊急情況下降落。民用雷達和空管的聯網已經開始。 軍用飛機將獲得直接航線優先權。 行動期間,民用交通將受到高度波段限制。有許多軍民兩用機場。這些機場具有典型的運行特點。 軍用機場有特殊的安全問題。 此外,許多空軍基地的戰備平臺(ORP)上有全副武裝的飛機,可在短時間內起飛。戰損飛機的進場和著陸程序有很大不同。 民用停機坪可用于分散以色列空軍的資產。 ASC必須考慮到所有這些特殊性。
圖:軍民協調。
計算機系統現在可以完成許多通常需要人類智能的任務,如視覺感知、語音識別、決策和語言之間的翻譯。人工智能(AI)為ASC帶來了巨大的發展空間。智能機器系統可以解釋復雜的數據、感知環境并利用解決問題的技術采取適當的行動。人工智能將增強人類在ASC方面的決策能力,特別是在高空移動時,并將更具預測性,以避免潛在的危險事件。它將有助于做出 "去-不去 "的決定。 人工智能將緩解雷達和空中交通管制員目前的長期疲勞。它將極大地支持非常動態的ASC挑戰,并提供最大的操作自由度。
包括無人機群在內的載人和無人操作的混合將是ASC面臨的第一個重大挑戰。智能機載系統將通過高速數字數據鏈路與空中交通和戰斗機控制人員交換處理過的信息。 機載防撞和先進的交通顯示系統將大大提高飛行員和管制員的態勢感知能力。信息豐富的環境要求數據的完整性和安全性。 需要對原始數據進行篩選,使其充分傳播、顯示和使用。人機界面至關重要。必須平穩地轉換到新技術。TBA地區的空中交通和射彈密度將繼續增加。未來的空域將是 "動態 "的,但ASC將得到精確導航、高度測量和精確武器的支持。
無數的傳感器將幫助指揮官和管制員創建一個非常逼真的晝夜全天候態勢圖,以便更有效地管理空域。在地下掩體中利用數據顯示三維動態圖像將成為可能。人工智能將支持快速決策。它將提高操作自由度。在時間和空間上將最大限度地減少 "不開火 "命令。消除沖突將是自動和實時的。越來越多的空中平臺需要采用新技術,并配備適當的航空電子設備和數據鏈路。網絡將使控制中心安全并遠離戰爭迷霧。技術將使民用和軍用機組人員擁有更大的自由度,甚至可以實時選擇飛行路線和替代機場。下一代計劃將更加自動化和靈活,以適應廣泛的用戶。必須確保網絡安全。程序備份必須保持到位。技術發展非常迅速。任何新興國家都必須與時俱進。
美國陸軍目前擁有1700多架UH-60黑鷹直升機。這些通用直升機構成了輕型步兵的主要空中突擊平臺。他們還執行后勤、傷員疏散(CASEVAC)和搜索與救援(SAR)任務。
UH-60系列于1979年推出。為了提高性能和延長使用壽命,已經進行了多次升級計劃,但引進后續飛機已經變得緊迫。過時和材料疲勞不是更換UH-60至關重要的唯一原因。與同類大國或使用現代防空武器的地區大國間戰爭,要求美國部署一種配備最先進的航空電子設備、傳感器和性能參數的攻擊/通用直升機。
未來遠程突擊飛機(FLRAA)計劃尋求為美國陸軍、美國海軍陸戰隊(USMC)和聯合服務美國特種作戰司令部(SOCOM)提供一種UH-60的替代品。項目管理由陸軍負責。雖然FLRAA旨在具有多任務能力(反映黑鷹的作戰范圍),但武裝部隊將空中突擊任務作為主要的“理由”。
與UH-60相比,新的中型飛機將顯示出顯著的性能增強。這包括速度、航程和續航能力的大幅提升。最低可接受或閾值巡航速度是230節。陸軍的客觀目標包括280節的最大連續巡航速度和至少300海里的不加油任務半徑。USMC預計將收購第二大FLRAA艦隊,并制定了更高的性能標準(295節巡航速度和450海里航程)。這些物理性能參數在很大程度上反映了東亞一場大規模戰爭將帶來的前所未有的機動挑戰。除了在未來戰爭中預期的更遠距離之外,增強的速度和敏捷性還將提高有爭議環境中的生存能力,并有助于立即利用敵人防御中新創造的缺口。
空中突擊配置中的部隊攜帶能力被認為是決定最終選擇一個競爭者的重要因素。在這里,五角大樓再次設定了最低容量——12名戰備士兵——這超過了UH-60的能力。其他基本需求包括與在多域戰場作戰的其他飛機和地面部隊的全面聯網和互操作性。模塊化和開放系統架構對于最大限度地提高FLRAA的靈活性、保持機載系統的最新狀態和降低運行成本也至關重要。
2020年3月,美陸軍向兩家行業競爭對手貝爾-德事隆和波音-西科斯基團隊授予合同,參與FLRAA競爭性演示和風險降低(CD&RR)第一階段。該階段包括需求推導、權衡分析和初步概念設計。2021年3月,兩家競爭對手都進入了CD&RR第二階段,重點是在候選機身上集成主要子系統和任務系統。第二階段的工作將持續到2022年5月30日。
“通過CD&RR的努力,陸軍領導人有能力做出早期明智的決定,確保FLRAA能力不僅負擔得起,而且滿足多域作戰要求,同時交付積極的時間表,不犧牲嚴格的速度,”陸軍航空項目執行官員Rob Barrie準將在授予第二階段合同時說。
這兩家競爭者一直是飛行技術演示機,代表了他們將建造的量產飛機的一般設計特征。軍方飛行員和維修人員已經接觸到示威者,既可以直接了解情況,也可以向工業界提供反饋。除了數百小時的飛行測試外,兩架飛機還在任務集成實驗室和推進試驗臺上進行了深入研究。在CD&RR階段所做的觀察和獲得的見解將指導承包商完善和/或調整他們的設計和技術概念。這些見解還指導軍方根據可以合理預期的性能特征發展作戰概念。
雙發動機貝爾德事隆V-280 VALOR技術演示機采用傾轉旋翼推進,與同一公司制造的較大V-22魚鷹(OSPREY)有一些相似之處。V-280的特點是集成艙裝甲,并有一個v型尾翼增強機動性,特別是在高速時。測試期間達到的最高飛行速度為305節。貝爾公司于2021年6月完成了V-280的飛行測試,但仍在繼續評估自2017年12月飛機首次飛行以來收集的數據。
貝爾的最終設計方案預計將與V-280非常相似,盡管在演示階段吸取的經驗教訓可能會要求進行一些更改。貝爾公司在性能和優化維護程序方面都具有優勢,擁有超過60萬小時的V-22傾轉旋翼機飛行經驗。這種推進技術已經過實戰驗證。V-280上的推進系統采用簡化的驅動系統設計,采用掛架與吊艙旋轉。Bell表示,這消除了地面加熱,簡化了維護,特別是在現場。
其他經過驗證的性能參數包括280節的空速,以及在低速飛行操作中出色的機動性,包括回旋飛行機動。電傳數字控制系統包括無人駕駛飛行控制選項,使駕駛艙內的機組人員可以使用其他功能。V-280可在1,700海里的范圍內自行部署,作戰半徑(取決于配置)為500-800海里,大大超過了陸軍對遠程攻擊任務的要求。
貝爾公司還非常重視引導分布式孔徑傳感器(PDAS)固有的力保護能力。由德士龍的母公司洛克希德·馬丁公司開發的PDAS為機組人員提供360度態勢感知。它由一個集成傳感器網絡組成,包括分布在V-280艦體周圍的六個紅外攝像頭,這些攝像頭通過一個開放式架構處理器與駕駛艙和頭盔顯示器相連。顯示器也可以提供給飛機后部的人員,包括門炮手,提升機操作員,或準備下飛機的步兵。
波音-西科斯基公司用于CD&RR階段的演示平臺被命名為SB>1 DEFIANT。這架雙引擎飛機于2019年3月首次飛行,被歸類為復合型直升機。它的推進系統不同于傳統直升機。它有兩個反向旋轉的同軸轉子和一個后置推進器。與傳統轉子設計相比,前者提供了增強的升力和穩定性;后者提供相當大的向前推力而不傾斜主軸轉子的軸。
2022年1月18日,該小組宣布SB>1已成功完成其第一次完整任務剖面飛行。正如西科斯基公司首席試飛員Bill Fell所描述的那樣,這次測試“充分證明了違抗者執行FLRAA任務的能力,在水平飛行中飛行236節,然后在我們接近有限的、未改進的著陸區時,減少推進器的推力以快速減速。”這種水平機體減速使我們能夠保持態勢感知,并在整個進近和著陸過程中查看降落區域,而無需典型的機頭向上減速。”
演示機先前在森林地形、60度傾斜轉彎和投裝2400公斤多管發射火箭系統中執行了低空飛行操作。 該團隊于2021年1月宣布,將以“違抗SB>1”為基礎,提交“違抗X”同軸直升機,作為正式的量產飛機。與技術驗證機相比,擬生產設計的特點是降低了熱特征,改進了氣動操縱,并采用了三輪車起落架,以提高在惡劣環境下的性能。此外,自主功能已集成到飛行控制中,以增強靈活性和響應能力。
2022年2月10日,該團隊宣布選定霍尼韋爾HTS7500渦軸發動機為DEFIANT x提供動力。霍尼韋爾表示,該發動機在同級別軍用直升機渦軸發動機中提供了最有利的功率重量比。根據霍尼韋爾發布的新聞稿,新推出的HTS7500將提供更強的載荷能力和更高的燃油效率。
與2021年初授予的機身CC&DR第二階段合同并行,美陸軍還向其他公司發起了合同招標,以提交關鍵子系統的投標,特別是開放式架構航空電子設備和任務管理系統。
美陸軍的一份聲明稱:“實現FLRAA目標的關鍵是將模塊化開放系統方法(MOSA)納入其需求、采辦和維持戰略。”MOSA是提高生命周期可承受性的關鍵推動者,直接與陸軍航空兵目標保持一致,以實現持續的可承受性,并針對未來威脅提供持續的能力升級。”
開放式架構還將促進可交換任務系統的集成,包括所謂的“空射效果”(ALE)。根據美國陸軍的定義,ALE指的是由飛行器、有效載荷、任務系統應用程序和相關支持設備組成的一系列系統,旨在作為單個代理或團隊成員自主或半自主地交付效果。根據艦載機和ALE配置,影響范圍可以從動能或電子攻擊,到偵察和監視。該技術將用于傳統飛機以及目前正在開發的幾種直升機。當部署在FLRAA上時,ACE系統可以通過探測并潛在地抵消敵方防空系統和直升機飛行路徑上的其他威脅來增強部隊保護。
幾家公司正在爭奪與ALE相關的合同。柯林斯航空航天公司于2022年1月31日宣布,已成功演示了旨在支持ALE操作的RapidEdge?任務系統。除了基于實驗室的測試,演示系列還包括在管發射的Altius-700無人機上集成任務系統,該系統可以為直升機提供機載偵察、反無人機和對地攻擊能力。
據柯林斯航空航天公司描述,RapidEdge?技術作為ALE系統的“大腦”,包括用于通信的無線電、處理多層機密數據的解決方案、任務計算和空中發射飛行器的自主行為。Collins Aerospace綜合解決方案副總裁兼總經理Heather Robertson表示:“我們為這個市場設計了RapidEdge?任務系統解決方案,采用了高技術和高制造準備水平的強大而有彈性的開放系統方法。“該產品旨在滿足陸軍積極的項目時間表,同時為作戰人員提供關鍵能力。”
FLRAA還將能夠與更大的無人機(有人-無人組隊)聯合作戰,這可以為未來的空中突擊任務提供更強大的偵察和部隊保護資產。無論哪家供應商贏得最終合同,FLRAA的開放式體系結構方法都促進了多個有效載荷和數據鏈的集成,用于空降和地面部隊之間的協作跨域作戰。
最終的建議書已于2021年7月向兩家公司發出。投標截止日期為當年9月底。預計將于2022年6月底宣布向獲勝公司授予原型開發合同。虛擬原型開發階段將在合同授予后開始,并持續到2023年12月,最終進行初步設計評審。
虛擬原型階段將與物理原型構建階段重疊,該階段將從2023財年第三季度開始,一直持續到2026財年第二季度。這一階段將需要交付6架飛機用于工程和制造發展階段。首批原型機最早可能在2025財年第三季度交付,飛行測試和評估(由政府和供應商聯合進行)將持續到2029財年年底。生產和部署階段預計將于2028年開始,首批訂單為8架飛機。
美陸軍計劃在2030年裝備第一支作戰部隊。隨著新飛機的采購,武裝部隊將開始退役傳統的UH-60飛機。然而,獲得一個完整的FLRAA機隊將需要數年時間。現代化的UH-60M和UH-60V直升機將繼續與新型直升機一起使用,最后一批直升機大概要到2060年左右才能退役。這將使航空旅能夠根據任務要求和作戰環境部署飛機,為更具挑戰性的場景保留新飛機。
近年來,大國越來越多地尋求利用先進技術--人工智能(AI)、自主性、網絡和高超音速技術等--來達到軍事目的,并可能產生深遠的危險后果。與化學和核技術首次應用于戰爭時的情況類似,許多分析家認為,人工智能和其他此類 "新興技術 "的軍事利用將徹底改變戰爭,使過去的武器和戰略變得過時。根據這一展望,美國國防部正在分配越來越多的資金用于研究這些技術及其在軍事上的應用,其他大國的軍隊也是如此。
但是,即使美國軍方和其他國家的軍方加速利用新技術進行軍事用途,許多分析家警告說,在對這樣做的意外和危險后果有更多了解之前,不要如此匆忙地進行。例如,分析家們擔心,人工智能系統可能以不可預測的方式失敗,造成意外的屠殺或失控的升級。
軍控分析家們特別關注的是新興技術對 "戰略穩定 "的潛在影響,或者說有核國家在危機中避免首先使用核武器的情況。采用人工智能和其他新興技術的武器可能會模糊常規攻擊和核攻擊之間的區別而危及戰略穩定,導致過早使用核武器。
在這種擔憂的激勵下,許多國家的軍備控制倡導者和公民活動家都試圖減緩人工智能和其他新興技術的武器化,或對其在戰場上的應用施加各種限制。例如,《特定常規武器公約》(CCW)的締約國已經考慮了禁止開發和部署致命的自主武器系統--或者被批評者稱為 "殺手機器人 "的建議。近年來,監管新興技術的其他方法,包括各種單邊和多邊措施,也在不斷推進。
新興技術在軍事上最突出的應用是廣泛引入自主武器系統--將人工智能軟件與各種戰斗平臺(艦船、坦克、飛機等)結合起來,自行識別、跟蹤和攻擊敵方目標的裝置。通常情況下,這些系統包含了決定其操作參數的軟件,例如,它們可以在哪些地理空間內運作,它們可以攻擊哪些類型的目標,以及在什么情況下。
目前,美國軍隊的每一個分支,以及其他主要大國的部隊,都在開發--在某些情況下,投入使用--幾個系列的自主作戰系統,包括無人駕駛航空器(UAVs)、無人駕駛地面車輛(UGVs)、無人駕駛水面艦艇(USVs)和無人駕駛海底船只(UUVs)。
例如,美國海軍打算使用一支由USVs和UUVs組成的艦隊,在有爭議的地區進行偵察行動,如果戰爭爆發,則對敵方目標發射反艦和陸地攻擊導彈。美國空軍已經接受了 "忠誠的僚機 "方法,即武裝無人機在有爭議的空域飛行時,將通過攻擊敵人的戰斗機來幫助保護有人駕駛的飛機。美國陸軍試圖通過開發一系列機器人作戰系統,包括最終的機器人坦克,來減少對其前線部隊的危險。俄羅斯和中國軍隊正在開發和部署具有類似特點的無人系統。
像這樣的致命的自主武器系統的開發和部署引起了重大的道德和法律挑戰。首先,這些設備被授權對包括人類在內的敵方目標使用致命武力,而不需要大量的人類監督--這種做法違背了廣泛認同的道德和宗教原則,即只有人類才能奪走另一個人的生命。批評者還認為,這些武器將永遠無法遵守戰爭法和國際人道主義法,正如1899年和1907年的海牙公約以及1949年的日內瓦公約所規定的那樣。這些法規要求交戰各方在進行軍事行動時區分戰斗人員和非戰斗人員,并只使用為實現特定軍事目標所需的武力。自主武器的支持者聲稱,隨著時間的推移,這些系統將被證明有能力在激烈的戰斗中做出這種區分,但反對者堅持認為,只有人類擁有這種能力,因此所有此類設備都應被禁止。
圖:中國 WZ-8 高超音速偵察無人機于 2021 年 9 月 28 日在中國廣東省珠海市舉行的第十三屆中國國際航空航天展覽會(Airshow China 2021)上展出。
由于認識到這些危險,在《特定常規武器公約》的主持下,已經開展了協調一致的努力,以通過一項禁止部署致命自主武器系統的附加議定書。由于《特定常規武器公約》是以協商一致的方式運作的,而且締約國反對這樣的措施,因此禁止的支持者正在探索其他禁止戰略,例如在聯合國大會的主持下制定一項國際條約。歐盟的一些成員國也提出了一個不具約束力的行為準則,涵蓋致命性自主武器系統的部署,要求對其在戰斗中的使用進行持續的人為監督。
高超音速武器通常被定義為能以超過五倍音速(5馬赫)飛行的導彈,其飛行高度低于洲際彈道導彈(ICBMs),后者也以高超音速飛行。目前,美國、中國、俄羅斯和其他一些國家正在開發和使用兩種類型的高超音速武器(這兩種武器都可能攜帶核彈頭或常規彈頭):高超音速滑翔飛行器(HGVs),在從助推火箭釋放后沿著地球外層大氣 "滑翔 "的無動力彈丸;以及高超音速巡航導彈(HCMs),其動力來自高速噴氣發動機,稱為 "噴氣式"。
這些類型的武器擁有若干能力,使它們對軍事官員具有吸引力。由于其高速和優越的機動性,高超音速導彈可以在沖突早期用于攻擊高價值的敵方資產,如防空雷達、導彈電池和指揮和控制(C2)設施。由于高超音速導彈比洲際彈道導彈更接近地球,并擁有更大的機動性,它們可能有能力躲避旨在對付其他類型進攻性武器的反導彈系統。
所有三個大國都探索過類似類型的高超音速導彈,但它們這樣做的戰略考慮似乎有所不同。美國目前尋求在區域性非核沖突中使用這種武器,而中國和俄羅斯似乎強調將其用于核以及常規應用。
美國空軍已著手開發兩種用于區域性的此類導彈:空射快速反應武器(ARRW),它將成為美國第一種投入使用的高超音速武器,以及高超音速攻擊巡航導彈(HACM)。同時,美國陸軍和海軍一直在聯合研制一種供兩軍使用的通用高超音速助推滑翔飛行器,以及將高超音速飛行器送入大氣層的助推火箭。俄羅斯已經在其一些SS-19 Stiletto洲際彈道導彈上部署了核武的Avangard HGV,而中國已經測試了東風-17(DF-17),這是一種裝有雙能力(核或常規)HGV彈頭的中程彈道導彈。
雖然這些武器項目大多仍處于開發或早期部署階段,但它們的存在已經引發了政策制定者和軍控倡導者對其對戰略穩定的潛在影響的擔憂。例如,分析家們擔心,在常規交戰的早期使用高超音速武器來制服對手的關鍵資產,可能會被解釋為核第一打擊的前奏,從而促使目標國在不確定攻擊者的意圖時發射自己的核彈藥。
目前,中國、俄羅斯和美國的官員還沒有一個既定的場所可以開會討論對高超音速武器的正式限制。美俄戰略穩定對話可以作為政府官員之間就這些議題進行直接會談的可能論壇。雖然華盛頓在俄羅斯入侵烏克蘭后暫停了對話,但一旦情況允許,雙方應盡快回到對話桌上。美中戰略對話,如果建立,也可以解決類似的問題。
網絡空間領域--雖然對許多公共、私人和商業功能有巨大的價值--也被證明是一個有吸引力的大國競爭的舞臺,因為該領域容易受到各種惡意和侵略性活動的影響。這些活動包括網絡間諜,或盜竊軍事機密和技術數據,以及旨在破壞敵人的指揮、控制和通信(C3)系統的攻擊性行動,從而削弱其成功發動戰爭的能力。這種行動也可能針對對手的核C3(NC3)系統;在這種情況下,一方或另一方擔心核交換即將發生,可能會試圖通過使對手的NC3系統癱瘓來減少其遭受攻擊的可能性。
分析家們警告說,在重大危機或常規沖突中,對對手NC3系統的任何網絡攻擊都可能被證明是非常不穩定的。一旦發現其關鍵指揮系統受到干擾,目標國很可能會認為對手對其發動了先發制人的核打擊,因此可能會發射自己的核武器,而不是冒險讓對方損失。
常規武器與核C3的廣泛結合使這些危險更加復雜。出于經濟和便利的考慮,大國選擇依靠相同的預警和通信聯系來為其核力量和常規力量服務--卡內基國際和平基金會的詹姆斯-阿克頓將這種現象描述為 "糾纏"。在大國沖突中,一方或另一方可能會在非核攻擊的開始階段使用網絡武器使其對手的常規C3系統失效,但其對手--可能擔心其核系統是預定目標--可能會過早地發射其核武。
將網絡空間用于軍事目的對軍備控制構成了重大挑戰。現有的檢查和核查手段目前無法檢測到網絡武器,而網絡武器的存在往往難以證明。隨著網絡武器的擴散給戰略穩定帶來新的嚴重威脅,決策者有責任制定戰略,防止意外和非故意的升級。分析人士認為,一些最有效、最穩定的措施是美俄和美中達成雙邊協議,避免對對方的NC3系統進行網絡攻擊。
隨著新的高超音速武器和其他高能力常規武器的引入,戰爭的節奏可能會加快,并因此加劇了戰斗指揮官做出快速戰斗決定的壓力。作為回應,主要大國的軍隊計劃越來越多地依靠人工智能的戰場決策系統來幫助人類指揮官處理關于敵人動向的大量數據,并確定可能的戰斗反應。
在美國軍方,開發這類自動化系統的主要機制是全域聯合指揮與控制(JADC2)計劃。在空軍先進戰場管理系統的監督下,JADC2被設想為一個計算機群,共同收集來自無數平臺的傳感器數據,將數據組織成可消化的塊狀,并為指揮官提供可能的戰斗選項菜單。雖然JADC2最初打算用于常規作戰,但該計劃最終將連接到國家的NC3系統。
戰場決策自動化的提高,特別是考慮到核和常規C3系統的可能整合,引起了許多關注。這些技術中的許多仍處于起步階段,容易出現經常是意料之外的故障。熟練的專業人員也可以愚弄,或 "欺騙 "人工智能系統,造成意想不到的,可能是危險的結果。此外,無論在網絡安全方面花了多少錢,計算機系統將始終容易受到復雜對手的黑客攻擊。
鑒于這些風險,中國、俄羅斯和美國的政策制定者應該對加速其C3系統的自動化有所顧忌。理想情況下,這三個國家的政府官員和技術專家應該會面--估計是以類似于美俄戰略穩定對話的形式,考慮對任何與核指揮系統有關的自動化決策設備的使用加以限制。在這種會議變得可行之前,這些國家的專家應該在中立的場所舉行會議,以確定依賴這種系統所固有的危險,并探討控制這種系統的各種措施。
圖:2021 年 6 月 4 日,在伊利諾伊州馬斯庫塔的中美洲機場附近,一架無人駕駛的波音 MQ-25 T1 黃貂魚測試飛機(左)為有人駕駛的 F/A-18 超級大黃蜂加油。 (美國海軍照片由波音公司提供)
大國的軍事領導人旨在盡可能快地利用新興技術帶來的好處,因為他們相信這樣做將使他們在未來的大國沖突中獲得戰斗優勢。然而,這種利用新興技術進行軍事用途的驅動力,其速度遠遠超過了評估這些技術所帶來的危險并對其使用進行限制的努力。因此,必須減緩這些技術武器化的步伐,仔細權衡這樣做的風險,并對其軍事用途采取有意義的限制。
鑒于這一努力所涉及的技術的多樣性和復雜性,沒有任何一個總體性的條約或協議可能能夠對所有相關技術進行限制。因此,相關國家的領導人應集中精力采取一個框架戰略,旨在推進一系列措施,無論其預期結果如何,都有助于實現防止意外升級和加強戰略穩定的更大目標。
在制定和實施這些措施時,決策者可以以循序漸進的方式進行,從更多的非正式、無約束力的措施到越來越具體、有約束力的協議。以下建議的行動步驟來自于軍控倡導者在多年的實踐和實驗中開發的工具箱。
意識建設。努力教育政策制定者和公眾,使其了解新興技術不受管制的軍事用途所帶來的風險。
第2軌和第1.5軌外交。來自大國的科學家、工程師和軍備控制專家之間的討論,以確定新興技術帶來的風險和可能的控制戰略。這類 "第2軌外交"可以在某個時候擴大到包括政府專家("第1.5軌外交")。
單邊和聯合倡議。大國在沒有正式軍控協議的情況下,自行或在志同道合的國家集團之間采取的步驟,以減少與新興技術相關的風險。
戰略穩定會談。中國、俄羅斯和美國的高級官員就某些新興技術的武器化對戰略穩定造成的風險以及減少這些風險的聯合措施進行討論。這些討論可以伴隨著建立信任措施(CBMs),目的是在執行和核查該領域的正式協議時建立信任。
雙邊和多邊安排。一旦大國領導人認識到新興技術的武器化所帶來的升級風險,他們就有可能就雙邊和多邊安排達成協議,以盡量減少這些風險。
如果不采取這些措施,就會使尖端技術以越來越快的速度應用于軍事系統,從而大大放大了世界安全面臨的風險。更透徹地了解某些破壞穩定的技術對戰略穩定構成的獨特威脅,并對其軍事用途施加限制,將大大有助于減少世界末日的風險。
認知方法在幾乎所有方面可提高現有雷達的性能,這導致了近年來研究的激增,空軍雷達建模和仿真(M&S)工具的一個關鍵差距是缺乏針對分布式全適應雷達(FAR)系統的全面、動態分布式雷達情景生成能力。截至2015年初,所有的研究都是在理論上推進概念,并通過模擬檢驗其性能,或者最多使用預先錄制的數據。沒有關于實驗驗證概念的報告,主要是因為還沒有開發出測試它們的必要硬件。然而,為了確定應用認知處理方法的真正性能潛力,這一步驟是至關重要的。為了解決這個問題,俄亥俄州立大學(OSU)電子科學實驗室(ESL)的認知傳感實驗室(CSL)與Metron公司、空軍研究實驗室(AFRL)和空軍科學研究辦公室(AFOSR)一起,已經開始了一項研究計劃,從分析和實驗上開發和檢驗認知雷達處理概念。
CSL設計并建造了認知雷達工程工作區(CREW),這是世界上第一個專門用來測試完全自適應和認知算法的雷達測試平臺,Metron和OSU開發了一個認知FAR系統的理論框架,在單一傳感器和目標的目標探測和跟蹤范圍內確定了關鍵的系統組件并進行了數學建模。我們一直在開發建模、模擬、分析和實驗能力,以證明FAR系統比傳統的前饋雷達(FFR)系統取得的性能改進。我們從OSU的軟件定義雷達(SDR)系統的模擬場景和預先記錄的數據開始。我們現在有能力利用CREW演示認知雷達跟蹤系統的實時操作。
這個項目的目標是為分布式FAR雷達開發一個基于MATLAB的M&S架構,從而能夠在模擬的、以前收集的和實時的流式數據上進行算法開發和測試。在第一階段,我們開發了一個基線FAR M&S架構,該架構采用面向對象編程(OOP)方法在MATLAB中編碼。它包括一個控制感知-行動(PA)周期運行的FAR引擎和確定下一組傳感參數的軟件對象;從傳感器獲取數據;處理數據以跟蹤目標;存儲和顯示傳感和跟蹤過程的結果。我們開發的模塊實現了模擬和預先錄制的SDR數據實例,以及實時和模擬的CREW數據實例。
第一階段開發的FAR M&S架構允許在模擬和實驗CREW數據源之間,以及在驅動傳感的FAR算法之間進行透明切換。輕松交換傳感和處理對象的能力將允許快速開發和測試認知雷達算法,通過構建M&S功能來避免重復工作和 "單點 "解決方案。它將使工業界、學術界和空軍的研究人員之間的合作成為可能,因為不同研究人員開發的算法可以使用一致的模擬、收集的數據和實驗室條件進行測試和比較。
美國導彈防御局(MDA)和空間發展局(SDA)目前正在開發高超音速導彈防御系統的要素,以防御高超音速武器和其他新興的導彈威脅。這些要素包括國防空間架構(NDSA)的跟蹤和運輸層以及各種攔截器項目。隨著MDA和SDA繼續開發這些系統,國會可能會考慮對監督和國防授權及撥款的影響。
高超音速武器,像彈道導彈一樣,飛行速度至少為5馬赫,或大約每秒1英里。與彈道導彈不同,高超音速武器不遵循彈道軌跡,可以在到達目標的途中進行機動。據報道,俄羅斯在2019年12月出動了其第一批高超音速武器,同時一些專家認為,中國早在2020年就出動了高超音速武器。預計美國在2023年之前不會裝備高超音速武器。(關于俄羅斯、中國和美國的高超音速武器項目的概述,見CRS報告R45811,高超音速武器:國會的背景和問題,作者是凱利-M-賽勒)。
高超音速武器的機動性和低飛行高度可以挑戰現有的探測和防御系統。例如,由于雷達探測的視線限制,大多數地面雷達在武器飛行后期才能探測到高超音速武器。這給防御者留下了極少的時間來發射攔截器,以抵消入境武器的影響。圖1描述了陸基雷達對彈道導彈和高超音速武器探測時間的差異。
圖1. 基于地面的彈道導彈探測與高超音速武器的探測
美國國防官員表示,現有的地面和天基傳感器架構都不足以探測和跟蹤高超音速武器;前國防部負責研究和工程的副部長邁克-格里芬指出,"高超音速目標比美國通常通過地球靜止軌道上的衛星跟蹤的目標要暗淡10到20倍。"
SDA開發了國防空間架構,以 "統一和整合整個[國防部(DOD)]和行業的下一代能力"。NDSA的目標是成為一個 "單一的、連貫的、有七個層次的擴散空間架構",其中包括圖2中描述的數據跟蹤和傳輸層,并在下面討論。其他層包括支持移動地面資產目標的監護層;提供基于空間的指揮和控制的戰斗管理層;提供 "潛在的GPS否認環境的替代定位、導航和授時"的導航層;探測深空潛在敵對行動的威懾層;以及為其他NDSA層促進衛星操作的支持層。一旦全面投入使用,NDSA將包括550顆衛星并提供全面的全球覆蓋。
跟蹤層是為了 "提供全球指示、警告、追蹤和瞄準高級導彈威脅,包括高超音速導彈系統"。作為該層的一部分,SDA正在開發一個寬視場(WFOV)衛星的結構,最終將提供全球覆蓋。SDA要求在2023財政年度為第0階段跟蹤活動提供8130萬美元,為第1階段跟蹤活動提供4.998億美元(也稱為彈性導彈預警導彈跟蹤-低地球軌道)。
與SDA的跟蹤衛星協同工作的將是高超音速和彈道跟蹤空間傳感器(HBTSS),以前被稱為空間傳感器層,它是由MDA與SDA和美國空軍合作開發。與WFOV相比,HBTSS將提供更靈敏,但更有限的(或中視場[MFOV])覆蓋范圍。出于這個原因,WFOV旨在為HBTSS提供提示數據,然后HBTSS可以為地面攔截器提供更具體的目標質量數據。到2023年,SDA計劃擴大跟蹤層,包括70顆WFOV和MFOV衛星,據SDA主任德里克-圖爾尼爾博士說,"這將使我們在低地球軌道上有足夠的覆蓋面,以便我們基本上可以有區域性的持久性"。MDA要求在2023財政年度為HBTSS提供8920萬美元。
2020財年NDAA(P.L. 116-92)第1682條要求導彈防御局局長 "開發一個高超音速和彈道導彈跟蹤空間傳感器有效載荷"。2021財年NDAA(P.L. 116-283)第1645條確認,MDA局長與SDA局長協調,負責開發和采購傳感器有效載荷,"至少到2022財年"。第1645節還要求最遲在2023年12月31日開始對傳感器有效載荷進行在軌測試,并在 "此后技術上可行的情況下 "盡快將傳感器有效載荷納入SDA更廣泛的天基傳感器架構。最后,2022財年NDA(P.L. 117-81)第1662條禁止MDA主任"[授權]或[承諾]為生產衛星或與此類衛星運行相關的地面系統的記錄計劃提供資金"。如果滿足某些條件,包括確定 "由于技術、成本或進度因素,這種限制會延遲交付可運行的[HBTSS]",空軍負責空間采購和集成的助理部長可以放棄對HBTSS的這種限制。
圖2. NDSA的部分內容
美國防部表示,NDSA的傳輸層旨在將跟蹤層與地面的攔截器和其他武器系統連接起來,將 "加強包括導彈防御在內的若干任務領域"。據國防部稱,SDA已經為運輸層的第1階段授予了三個原型協議,"一個由126個光學相互連接的空間飛行器組成的網狀網絡",將于2024年9月開始發射。運輸層最終將包括一個由大約300-500顆衛星組成的星座。SDA要求在2023財政年度為 "數據傳輸層、傳感器能力和備用位置、導航和計時能力 "提供8.164億美元。
MDA已經探索了一些消除對手高超音速武器的方案,包括攔截導彈、超高速彈丸、定向能武器和電子攻擊系統。2020年1月,MDA發布了一份關于高超音速防御區域滑行階段武器系統攔截器的原型提案要求草案。該計劃旨在 "減少攔截器的關鍵技術和集成風險";然而,據當時的MDA主任喬恩-希爾海軍中將稱,它在2030年代的某個時候才會準備好過渡到開發。MDA轉而將重點轉向較近的解決方案,并在2021年4月啟動了滑翔階段攔截器(GPI),它將與宙斯盾武器系統整合,并在2020年代中期至末期提供高超音速導彈防御能力。洛克希德-馬丁公司、諾斯羅普-格魯曼公司和雷神導彈與防御公司已經獲得了GPI的 "加速概念設計 "階段的合同。
此外,2022財年NDAA(P.L. 117-81)第1664條授予MDA主任 "預算、指導和管理適用于 "高超音速導彈防御的定向能源項目的權力。國防高級研究計劃局(DARPA)也正在進行一項名為 "滑翔破壞者 "的計劃,其目的是 "開發關鍵的組件技術,以支持一種輕型飛行器,用于在非常遠的距離上精確對付高超音速威脅。" DARPA要求在2023財年為 "滑翔破壞者 "提供1830萬美元。總體而言,MDA在2023財年為高超音速防御申請了2.255億美元,低于其2.479億美元的2022財年申請和2.878億美元的撥款。
一些分析家認為,天基傳感層--與跟蹤和瞄準系統相結合以引導高性能攔截器或定向能量武器--理論上可以提供防御高超音速武器的可行選擇。2019年導彈防御審查報告指出,"這種傳感器利用了從空間可看到的大面積,以改善跟蹤,并可能瞄準先進的威脅,包括高超音速[武器]。" 其他分析家對高超音速武器防御的可負擔性、技術可行性和/或效用提出質疑。此外,一些分析家認為,美國目前的指揮和控制架構將無法 "快速處理數據,以應對和消除即將到來的高超音速威脅"。
一些分析家還對目前SDA和MDA在高超音速導彈防御方面的分工提出質疑。SDA主任Tournear此前曾對這兩個機構之間可能存在冗余的批評作出回應,稱兩者都向負責研究和工程的國防部副部長報告。然而,從2022年10月1日起,SDA將改為向負責采購和整合的空軍助理部長報告。國會可以監督這種新的報告結構對效率和效能的影響。
加快對高超音速導彈防御方案的研究是否必要且在技術上可行?高超音速導彈防御方案的技術成熟度是否值得目前的資金水平?
SDA和MDA是如何在高超音速導彈防御的各種要素上進行合作的?它們目前的作用是增加還是減少了成本以及技術發展的速度和效率?
國防部是否具備執行高超音速導彈防御所需的能力,如適當的指揮和控制架構?
浮動航天器模擬器(FSS)是模仿衛星在空間運動的機器人載體。使用FSS可以在地球上對制導、導航和控制算法進行實驗驗證,然后再將其應用于空間,因為空間的錯誤是災難性的。此外,FSS是空間系統工程課程中大學生的一個重要研究和教育工具。然而,目前使用的所有FSS都是定制開發和昂貴的項目。本論文涵蓋了用于教學和研究目的的新型浮動航天器模擬器的開發、組裝和測試過程,該模擬器被命名為MyDAS,代表微型動態自主航天器模擬器。通過介紹MyDAS,一個小型的、簡單的和低成本的FSS,使FSS在大學和中學階段的研究和教育中得到更廣泛的利用。討論了MyDAS的不同推進配置及其相應的運動方程。對于一個特定的配置,選擇并測試了現成的氣動和電子組件。一個模塊化和標準化的3D打印框架將所有部件固定在一起,形成一個最終的剛性載體。最后,MyDAS在各種實驗中被測試,完成了全部的硬件功能。
本論文進行小型化和簡化的浮動航天器模擬器(FSS)工作。本章簡要介紹了這項工作的動機和目標,以及本論文的結構。
未來空間任務中的航天器需要靈活、自主的制導、導航和控制(GNC)算法,如對接、接近或清除碎片的操縱[1], [2], [3]。用硬件在回路中驗證GNC算法的一種方法是使用FSS,而無需將測試對象送入太空。盡管不向太空發射任何東西而大大降低了成本,但目前的FSS仍然需要大量的經濟和費時的工作來建造和操作,這只有專門的機構或公司才可能做到。除此之外,目前的FSS都是獨特的設計,沒有標準化。引入一種新的、負擔得起的、小而簡單的FSS可以使本科生甚至高中生以及業余用戶能夠使用FSS工作。提供這種機會可以增加為未來空間任務創造更好的GNC算法的成功機會。
先前工作提出了一個更便宜、更小、更簡單的FSS的概念[4],稱為MyDAS,代表微型動態自主航天器模擬器。提出了初步的計算機輔助設計(CAD)模型、材料清單、氣動圖、接線圖、兩種浮動配置和三種推進配置。本論文的目的是建立一個MyDAS的物理工作實例。為此,所有定制設計的部件應與購買的現成部件一起制造和組裝。所有的功能部件應先單獨測試,然后再組合。最終的裝置必須能夠使用壓縮空氣供應漂浮和推動自己。如果可能的話,在不使用推進系統的空氣的情況下,漂浮時間應超過5分鐘。此外,推進系統必須由機載計算機和機載電池控制。該裝置的硬件和軟件應是開源的,以使其可重復使用。作為其中的一部分,將提出一個成本估算。在未來的工作中,希望MyDAS能被積極用于驗證和改進GNC算法。
如上所述,本論文是基于以前的工作,其中介紹了關于FSS的理論基礎和技術現狀[4]。理論基礎和技術現狀同樣適用于本論文,這就是為什么它們在本文件中沒有明確重復。在第2章運動方程中,以前工作中的簡化運動方程被指定用于其中一個推進配置。第3章氣動系統討論了MyDAS的氣動系統。第4章電子學中解釋了MyDAS的電路以及所有的電子元件。第5章框架設計的主要內容是構建和制造一個定制的、3D打印的框架,該框架將所有的部件固定在一起。第6章設置和測試描述了在組裝MyDAS的過程中對單個和組合部件的若干測試。在第7章實驗中,全功能的FSS被用在一個花崗巖試驗臺上,以證明其功能,以及描述某些推進方面的特征。最后一章的結論是對工作的總結以及對未來工作的建議。復制MyDAS的基本信息,如技術圖紙、材料清單和Python列表,可以在附錄中找到。此外,該代碼與CAD文件和更多不能打印在紙上的數據一起在網上提供。
在過去17年的反叛亂行動中,美國陸軍的許多師級情報分析員和設備都停留在靜態、集中的戰術行動中心,以促進對地面行動的情報支持。最近出版的《作戰手冊》(FM)3-0(2017年10月)將美國陸軍的重點從反叛亂轉向大規模的地面作戰行動。這些行動要求各師能夠建立多個前沿指揮所(CPs),這些指揮所能夠生存并能夠在退化和有爭議的領域促進任務指揮。為了支持大規模的戰斗,情報部門必須重新平衡人員、能力和設備,在一個師能夠建立的所有前線指揮所中,使該師的情報作戰功能具有生存能力。這需要將人員和情報專用設備從主指揮所和戰術指揮所調出,以支持支援區/早期進入指揮所和機動指揮組(如果指揮官需要)。為了考慮到美國同行威脅對手通過電子和網絡攻擊來爭奪美國陸軍進入空間領域的能力,這次重組還需要調整師級的通信計劃,以考慮模擬通信。
“大規模作戰行動的流動性和混亂性將對情報作戰功能造成最大程度的混亂、摩擦和壓力。” - 美國陸軍學說出版物2-0《情報》
在過去的17年中,美國陸軍的情報機構主要是為支持伊拉克和阿富汗的反叛亂行動而運作。陸軍各師總共部署了20多次,以支持伊拉克自由行動(OIF)和持久自由行動(OEF)。這是響應國家號召,支持擊敗基地組織、敘利亞伊斯蘭國(ISIS)、利比亞伊斯蘭國(ISIL)和其他在中央司令部負責區域內活動的恐怖組織。每一次部署都由不同的作戰環境、獨特的任務以及不同程度的作戰成功和失敗所決定,但有一個共同點:師部的情報行動主要由分析員使用靜態、集中的戰術行動中心(TOC)中的設備進行。隨著陸軍為未來的作戰行動做準備,《作戰手冊》(FM)3-0(2017年10月)將重點從反叛亂轉移到準備在大規模作戰行動(LSCO)中與同行競爭者作戰。FM 3-0明確指出,師的主要作用是 "作為戰術總部指揮各旅進行決定性的行動"。這些行動要求各師能夠建立多個前沿指揮所(CPs),這些指揮所具有機動性、可生存性,并且能夠在退化和有爭議的領域內促進任務指揮。
在OIF和OEF期間,促成師級情報行動的一個關鍵能力是一個無爭議的空間領域。指揮官和下屬單位通過一個使用衛星的情報架構,在叛亂團體沒有能力影響的空間領域,收到近乎實時的情報收集、處理、利用和傳播。除了無爭議的通信網絡,叛亂分子的游擊戰術主要集中在東道國的政府設施和人口中心,這使得師部情報部門可以在大型前沿作戰基地(FOB)開展行動,而不需要對情報部門的生存能力和機動性作出重大規劃。師中央情報局沒有受到敵人的持續和直接攻擊的威脅。大規模的戰斗不會給情報部門帶來領域優勢或假定的生存能力。同行對手將在所有領域與美軍進行較量,甚至可能在某些領域長期保持優勢。FM2-0《情報》指出:"部隊必須準備好對抗各種威脅、敵方陣型和未知因素的情報。"威脅的變化并沒有改變情報的作用,即提供 "及時、準確、相關和預測性的情報,以了解威脅的特征、目標和行動方案,從而成功執行進攻和防御任務。"然而,威脅的變化確實提高了對情報的期望。大規模的戰斗代表了情報行動執行方式的范式轉變。各師可能會在大的地理區域內建立多個不斷流動的中央情報局,以履行其任務指揮職責,而情報部門必須準備好支持他們。
美國陸軍理論討論了一個師能夠建立的五種類型的指揮所:主指揮所(MCP)、戰術指揮所(TAC)、機動指揮組、支援區指揮所(SACP)和早期進入指揮所(EECP)。每個指揮所執行不同的功能,從而使任務指揮更加有效。按照目前陸軍修訂的組織和裝備表(MTOE)的規定,師級情報部門只被授權在MCP和TAC中操作人員和裝備。不能假設在LSCO環境中不使用其他CPs。陸軍各師必須確保其情報部門的結構能夠在不斷受到攻擊威脅的多個中心點有效運作,需要有快速轉移的能力才能生存。
由于有爭議的空間領域,通信能力將受到限制,影響基于衛星的通信的可能性增加。目前的情報架構依靠衛星在下屬單位的信息收集器和師級中央情報局的分析小組之間傳輸關鍵情報。衛星可用性的喪失極大地影響了師部情報部門支持指揮官了解、可視化和描述敵人威脅的能力。用于建立師部情報架構的設備授權缺乏靈活性和冗余度,無法支持在衛星通信被拒絕的環境下執行的情報行動。
本專著探討了師級情報部門組織人員和情報架構的最佳方式,以便在大規模作戰行動(LSCO)期間,在加強機動性、生存能力和有爭議空間領域的環境中,在多個指揮所開展行動。為了支持多個指揮所的工作,師情報部門必須確保在不同的指揮所中,師情報部門的所有任務都是冗余的,這一點超出了修訂的組織和裝備表的授權。G-2總部、G-2X和分析與控制部門的精選士兵必須以機動的方式執行他們的任務。為了在被拒絕或有爭議的空間環境中行動,師情報部門應該建立主要的、備用的、應急的和緊急的通信計劃,其中包括一個模擬信使系統,以向其他師的CP和下屬單位傳播情報。在LSCO環境中,由于行動節奏的加快,特別是在進攻中,情報職能可能會被大大削弱。
師情報部門必須有適當的姿態來支持作戰層面上的LSCO。無論作戰環境如何,師的情報部門必須為指揮官、參謀部和下屬單位提供盡可能及時和準確的信息。此外,情報和行動之間的關系是相互的,"情報推動行動,行動促成情報",在正確的地方沒有正確的情報人員和設備會降低組織的作戰效率。進一步的分析可以確定:1)目前授權給該師的情報人員和設備是否足以支持多個指揮所;2)提供關于G-2應該如何組織這些資產以支持大規模作戰行動中的任務指揮行動的建議。
為了找到支持性證據來檢驗這一假設,**本研究依賴于四個研究問題。首先,在大規模的作戰行動中,師級情報部門應該在哪些作戰環境中行動?第二,目前的師級情報部門是如何設計運作的?在支持LSCO行動要求的能力方面存在哪些差距?第三,在過去的LSCO環境中,單位不斷移動,通信網絡不像最近的反叛亂行動中那樣可以評估,情報部門是如何運作的?最后,根據目前部隊的最佳做法,G-2在其部門內部可以做些什么來更好地支持師級LSCO?**為了更好地闡明所討論的問題和本專論的內容,需要對幾個關鍵術語進行定義。機動性被定義為 "軍隊的一種質量或能力,它允許軍隊從一個地方移動到另一個地方,同時保持完成其主要任務的能力。"本專著討論了情報部門在執行其主要任務的同時進行生存性移動的能力。關于生存能力的討論涉及到 "保護人員、武器和物資,同時欺騙敵人的所有方面"。
第一節描述了情報部門應在哪些環境中行動,以及師部情報部門必須解決哪些問題以最好地支持LSCO。
第二節研究師級的情報行動。本節回顧了第二次世界大戰(WWII)期間的一次師級情報行動,這是美國陸軍部隊最后一次在沒有使用衛星來促進通信和情報收集的情況下進行LSCO。特別是第80步兵師在1944年和1945年在喬治-巴頓將軍的美國第三軍中橫跨法國北部作戰時的情報使用情況。這項研究確定了在情報部門組織和信息傳播方面的經驗教訓和最佳做法。此外,本專著還討論了一個師的情報部門最近的MTOE歷史,這些變化如何影響該部門支持LSCO的能力。
第三部分研究了G-2師目前是如何為LSCO進行訓練的,以便在大規模戰斗之前找出目前訓練趨勢所不能解決的能力差距。第三節還推薦了一個組織結構,使師級情報部門能夠更好地支持大規模的地面作戰行動,并使用基于理論要求的篩選標準來評估這一建議,以確保中央情報局的生存能力和完成師級情報行動的要求。
第四節提出了對大規模作戰中執行情報行動至關重要的關鍵見解。
美國海軍希望開發和采購三種類型的大型無人航行器(UV),稱為大型無人水面航行器(LUSV)、中型無人水面航行器(MUSV)和超大型無人水下航行器(XLUUVs)。海軍2023財年擬議預算要求為這些大型UV和LUSV/MUSV啟用技術提供5.493億美元的研究和開發資金,并為XLUUV和其他海軍UUV的核心技術提供6070萬美元的額外資金。
海軍希望獲得這些大型UVs,作為將海軍轉移到一個更加分布式艦隊架構的一部分工作,這意味著一種艦艇組合,將海軍的能力分散到更多的平臺上,并避免將艦隊整體能力的很大一部分集中到相對較少的高價值艦艇上(即一種避免 "把太多雞蛋放在一個籃子里 "的艦艇組合)。海軍和國防部(DOD)自2019年以來一直在努力制定一個新的海軍部隊目標,以反映這種新的艦隊組合。2022年4月20日發布的海軍2023財年開始30年(2023財年-2052財年)的造艦計劃,總結了對新的兵力目標進行的研究結果。這些研究概述了潛在的未來艦隊擁有27至153艘大型USV和18至51艘大型UUV。
海軍設想LUSV的長度為200英尺到300英尺,滿載排水量為1,000噸到2,000噸,這將使它們達到輕巡洋艦的大小(即比巡邏艇大,比護衛艦小的艦艇)。海軍希望LUSV是低成本、高端耐力、可重新配置的艦艇,有足夠的能力攜帶各種模塊化有效載荷--特別是反水面戰(ASuW)和打擊有效載荷,主要是指反艦導彈和對陸攻擊導彈。每艘LUSV可以配備一個垂直發射系統(VLS),有16到32個導彈發射管。盡管被稱為UV,LUSV可能被更準確地描述為選擇性或輕度載人的艦艇,因為它們有時可能有一些船員,特別是在近期內,當海軍制定LUSV的啟用技術和作戰概念時。根據海軍2023財政年度的五年(2023-2027財政年度)造艦計劃,海軍采購LUSV的計劃將在2025財政年度開始。
海軍將MUSV定義為45英尺到190英尺長,排水量大約為500噸,這將使它們與巡邏艇的尺寸相當。海軍希望MUSV和LUSV一樣,是低成本、高端耐力、可重新配置的船只,可以容納各種有效載荷。MUSV的初始有效載荷將是情報、監視和偵察(ISR)有效載荷和電子戰(EW)系統。海軍2023財年開始的五年(2023-2027財年)造艦計劃不涵蓋2023-2027財年期間采購MUSV的計劃。
XLUUV的大小大致與地鐵車廂相當。首批5艘XLUUV在2019財政年度獲得資助,正在由波音公司建造。海軍希望使用XLUUV秘密部署Hammerhead水雷,這種水雷將被拴在海底,并配備反潛魚雷,大致類似于海軍冷戰時期的CAPTOR(封裝式魚雷)。根據海軍2023財年開始的五年(2023-2027財年)造艦計劃,通過其他采購,海軍(OPN)計劃在2024財年開始采購額外的XLUUV。
在對海軍2020-2022財年的擬議預算進行標記時,國會國防委員會對海軍的采購戰略是否提供足夠的時間來充分開發這些大型UV,特別是LUSV的作戰概念和關鍵技術表示關注,并包括旨在解決這些問題的立法規定。作為對這些標記的回應,海軍已經重組了LUSV項目的采購戰略,以便遵守這些立法規定,并在進入可部署單位的批量生產之前提供更多的時間來開發作戰概念和關鍵技術。
圖1. 支持LUSV和MUSV計劃的原型機