亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

演化、信息和復雜性的數學分析涉及到演化、信息和復雜性的分析。系統或過程的時間演化是科學中的一個中心問題,本文涵蓋了廣泛的問題,包括擴散過程,神經網絡,量子理論和宇宙學。匯集了數學、信息理論、物理和其他科學技術領域的廣泛研究,這個新標題提供了對書中涉及的各個研究領域的基本和容易理解的介紹。

我們的書突出了我們學校的一些科學成就,因此有它的名字數學分析的演化,信息和復雜性。為了向讀者介紹這門學科,我們從信息理論、神經信息學和數學物理等科學和技術的不同部分及時地介紹了一些基本的、易于理解的主題。書中的每一篇文章都是由一個團隊編寫的,其中至少代表了兩個不同的學科。就這樣,數學家和物理學家合作寫了一章,物理學家和電氣工程師合作,等等。此外,我們還設置了一個規則,即每一個資深科學家都有一個研究生在研究這篇文章。我們希望這一規則能夠帶來容易理解的貢獻。《演化、信息與復雜性的數學分析》不僅代表了我校的規劃,成為了本書的標題,也成為了我校組織的指導原則。事實上,我們選擇了“演化”、“信息”和“復雜性”這三大支柱作為本書三部分的標題。對于每一個主題,我們都確定了一到兩個主題,如表0.1所示。

付費5元查看完整內容

相關內容

為藥物開發人員而不是計算機科學家寫的,這一專論采用了一種系統的方法來挖掘科學數據源,涵蓋了從化合物篩選到先導化合物選擇和個性化藥物的合理藥物發現的所有關鍵步驟。第一部分明確地分為四個部分,討論了不同的可用的數據來源,包括商業和非商業的,而下一節著眼于數據挖掘在藥物發現中的作用和價值。第三部分比較了多藥理學最常見的應用和策略,其中數據挖掘可以大大提高研究工作。書的最后一部分是致力于復合測試的系統生物學方法。

在整本書中,工業和學術藥物發現策略被處理,貢獻者來自兩個領域,使一個知情的決定,何時和哪些數據挖掘工具使用自己的藥物發現項目。

一般來說,從數據庫中提取信息稱為數據挖掘。數據庫是一種數據集合,其組織方式允許方便地訪問、管理和更新其內容。數據挖掘包括數字和統計技術,可以應用于許多領域的數據,包括藥物發現。數據挖掘的功能定義是使用數值分析、可視化或統計技術來識別數據集中重要的數值關系,從而更好地理解數據并預測未來的結果。通過數據挖掘,我們可以得到一個模型,該模型將一組分子描述符與諸如功效或ADMET特性等生物關鍵屬性聯系起來。所得模型可用于預測新化合物的關鍵屬性值,為后續篩選確定優先級,并深入了解化合物的構效關系。數據挖掘模型范圍從簡單的、由線性技術導出的參數方程到復雜的、由非線性技術導出的非線性模型。文獻[1-7]提供了更詳細的信息。

這本書分為四個部分。第一部分涉及藥物發現中使用的不同數據來源,例如,蛋白質結構數據庫和主要的小分子生物活性數據庫。第二部分重點介紹數據分析和數據豐富的不同方法。在這里,我們提出了對HTS數據挖掘和識別不同目標命中的工業見解。另一章展示了強大的數據可視化工具在簡化這些數據方面的優勢,從而促進了它們的解釋。第三部分包括多種藥理學的一些應用。例如,在化學基因組學時代,數據挖掘可以為配體分析和目標捕捉帶來積極的結果。最后,在第四部分,系統生物學方法被考慮。例如,讀者被介紹到綜合和模塊化分析方法,以挖掘大分子和表型數據。結果表明,該方法能夠降低高維數據的復雜性,并為整合不同類型的組學數據提供了一種方法。在另一章中,建立了一套新的方法,定量地衡量化學品對生物系統的生物影響。

付費5元查看完整內容

//www.worldscientific.com/page/pressroom/2018-07-31-01

這本書提供了一個機器學習和數據挖掘領域的數學分析。典型的計算機科學數學課程的數學分析部分省略了這些非常重要的思想和技術,這些思想和技術對于機器學習的專門領域是不可缺少的,以優化為中心,如支持向量機,神經網絡,各種類型的回歸,特征選擇和聚類。本書適用于研究者和研究生,他們將從書中討論的這些應用領域獲益。

數學分析可以被松散地描述為數學的一個領域,其主要對象是研究函數及其關于極限的行為。術語“函數”指的是實參數實函數的廣義集合,包括函數、運算符、測度等。在數學分析中,有幾個發展良好的領域對機器學習產生了特殊的興趣:拓撲(具有不同的風格:點集拓撲、組合拓撲和代數拓撲),賦范和內積空間的泛函分析(包括巴拿赫和希爾伯特空間),凸分析,優化,等等。此外,像測量和集成理論這樣的學科在統計學中發揮著至關重要的作用,這是機器學習的另一個支柱,在計算機科學家的教育中缺乏。我們的目標是為縮小這一差距做出貢獻,這是對研究感興趣的人的一個嚴重障礙。機器學習和數據挖掘文獻非常廣泛,包括各種各樣的方法,從非正式的到復雜的數學展示。然而,接近研究主題所需要的必要的數學背景通常以一種簡潔和無動機的方式呈現,或者干脆就不存在。本卷機器學習的通常介紹,并提供(通過其應用章節,討論優化,迭代算法,神經網絡,回歸,和支持向量機)的數學方面的研究。

付費5元查看完整內容

這本書的目的是全面概述在算法的數學分析中使用的主要技術。涵蓋的材料從經典的數學主題,包括離散數學,基本的真實分析,和組合學,以及從經典的計算機科學主題,包括算法和數據結構。重點是“平均情況”或“概率”分析,但也涵蓋了“最壞情況”或“復雜性”分析所需的基本數學工具。我們假設讀者對計算機科學和實際分析的基本概念有一定的熟悉。簡而言之,讀者應該既能寫程序,又能證明定理。否則,這本書是自成一體的。

這本書是用來作為算法分析高級課程的教科書。它也可以用于計算機科學家的離散數學課程,因為它涵蓋了離散數學的基本技術,以及組合學和重要的離散結構的基本性質,在計算機科學學生熟悉的背景下。傳統的做法是在這類課程中有更廣泛的覆蓋面,但許多教師可能會發現,這里的方法是一種有用的方式,可以讓學生參與到大量的材料中。這本書也可以用來向數學和應用數學的學生介紹與算法和數據結構相關的計算機科學原理。

盡管有大量關于算法數學分析的文獻,但該領域的學生和研究人員尚未直接獲得廣泛使用的方法和模型的基本信息。本書旨在解決這種情況,匯集了大量的材料,旨在為讀者提供該領域的挑戰的欣賞和學習正在開發的先進工具以應對這些挑戰所需的背景知識。補充的論文從文獻,這本書可以作為基礎的介紹性研究生課程的算法分析,或作為一個參考或基礎的研究人員在數學或計算機科學誰想要獲得這個領域的文獻自學。

第 1 章:算法 分析考慮算法分析的一般動機以及研究算法性能特征的各種方法之間的關系。

第 2 章:遞歸關系 專注于各種類型的 遞歸關系的基本數學屬性,這些遞歸關系在通過從程序的遞歸表示到描述其屬性的函數的遞歸表示的直接映射來分析算法時經常出現。

第 3 章:生成函數 在算法的平均情況分析中介紹了一個核心概念:生成函數 ——作為我們研究對象的算法與發現其屬性所必需的分析方法之間的必要且自然的聯系。

第 4 章:漸近逼近 研究了推導問題的近似解或逼近精確解的方法,這使我們能夠 在分析算法時對感興趣的數量進行 簡潔而精確的估計。

第 5 章:分析組合 學介紹了一種研究組合結構的現代方法,其中生成函數是研究的中心對象。這種方法是通過本書其余部分研究特定結構的基礎。

第 6 章:樹 研究了許多不同類型的 樹的屬性,以及在許多實際算法中隱含和顯式出現的基本結構。我們的目標是提供對樹組合分析的廣泛文獻結果的訪問,同時為大量算法應用提供基礎。

第 7 章:排列 調查了排列的組合屬性(數字1到N的排序),并展示了它們如何以自然的方式與基本的和廣泛使用的排序算法相關聯。

第 8 章:字符串和嘗試 研究 字符串、字符序列或從固定字母表中提取的字母的基本組合屬性,并介紹處理字符串的算法,從計算理論核心的基本方法到實用的文本處理方法重要應用程序的主機。

第 9 章:單詞和映射 涵蓋單詞的全局屬性( 來自M 字母字母表的 N 字母字符串),這些屬性在經典組合學(因為它們模擬獨立伯努利試驗的序列)和經典應用算法(因為它們散列算法的模型輸入序列)。本章還涵蓋了隨機映射 ( N個字母表中的N個字母單詞),并討論了與樹和排列的關系。

付費5元查看完整內容

《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。

這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。

//www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

付費5元查看完整內容

這本書的目的是介紹計算機科學家所需要的一些基本數學知識。讀者并不期望自己是數學家,我們希望下面的內容對你有用。

付費5元查看完整內容

本書的靈感來源于無聊與迷戀的感覺:對常規的數據結構與算法介紹的無聊,對復雜系統的迷戀。數據結構的問題在于教師在教授這門課程的時候通常不會調動起學生的積極性;復雜性科學的問題在于學校通常不會教授這門課程。

2005年,我在歐林學院講授了一門新課程,學生要閱讀關于復雜性的主題,使用Python進行實驗,并學習算法與數據結構。當我在2008年再次講授這門課程時,我寫了本書的初稿。

在2011年第3次講授這門課程時,我準備出版該書并邀請學生們以案例研究的形式提交其工作成果并包含在書中。我在歐林學院找了9位教授成立了項目委員會,選擇可供出版的報告。符合標準的案例研究被納入到本書中。我們將在下一版吸納來自讀者的更多稿件(參見附錄A)。

對教師的建議

本書可以用作Python編程與算法的大學中級課程教材。我的教學遵循如下結構:

閱讀: 復雜性科學涵蓋了各種主題。這些主題之間相互關聯,但需要花費不少時間才能搞清楚這些聯系。為了幫助學生們看到全景,我會向他們介紹一些閱讀列表,這些都來自于該領域最流行的研究成果。我的閱讀列表以及關于如何使用它的建議在附錄B中。

練習: 本書提供了一系列練習;很多練習都要求學生重新實現一些開創性實驗并對其進行擴展。復雜性吸引人的一個地方在于我們可以通過適當的編程技能與數學知識接觸研究前沿。

討論: 書中的主題提出了關于科學哲學的問題,這需要學生們進一步閱讀并進行課堂討論。

在我的課堂上,我們將幾乎半個學期的時間都用在了案例研究上。學生們經由構思產生過程、形成團隊,并在一系列實驗上花費6~7周的時間,然后以4~6頁可發表的報告形式來呈現其工作成果。

可以通過//sites.google.com/site/compmodolin了解課程大綱與我的說明。

對自學者的建議

在2009~2010年,我作為Google的一名訪問學者在其劍橋辦公室工作。在與我共事的軟件工程師中,讓我印象深刻的一點是他們廣博的求知欲以及增長知識與技能的動力。

我希望本書能夠幫助像他們一樣的人們來探索他們可能遇不到的一些主題與想法,練習Python編程技能,以及學習關于數據結構與算法的更多知識(或者看看有哪些內容不適合放在第1版中)。

本書針對自學者的一些特點有:

技術深度

付費5元查看完整內容

本書是信息論領域中一本簡明易懂的教材。主要內容包括:熵、信源、信道容量、率失真、數據壓縮與編碼理論和復雜度理論等方面的介紹。

本書還對網絡信息論和假設檢驗等進行了介紹,并且以賽馬模型為出發點,將對證券市場研究納入了信息論的框架,從新的視角給投資組合的研究帶來了全新的投資理念和研究技巧。

本書適合作為電子工程、統計學以及電信方面的高年級本科生和研究生的信息論基礎教程教材,也可供研究人員和專業人士參考。

本書是一本簡明易懂的信息論教材。正如愛因斯坦所說:“凡事應該盡可能使其簡單到不能再簡單為止。''雖然我們沒有深人考證過該引語的來源(據說最初是在幸運蛋卷中發現的),但我們自始至終都將這種觀點貫穿到本書的寫作中。信息論中的確有這樣一些關鍵的思想和技巧,一旦掌握了它們、不僅使信息論的主題簡明,而且在處理新問題時提供重要的直覺。本書來自使用了十多年的信息論講義,原講義是信息論課程的高年級本科生和一年級研究生兩學期用的教材。本書打算作為通信理論.計算機科學和統計學專業學生學習信息論的教材。

信息論中有兩個簡明要點。第一,熵與互信息這樣的特殊量是為了解答基本問題而產生的。例如,熵是隨機變量的最小描述復雜度,互信息是度量在噪聲背景下的通信速率。另外,我們在以后還會提到,互信息相當于已知邊信息條件下財富雙倍的增長。第二,回答信息理論問邀的答案具有自然的代數結構。例如,熵具有鏈式法則,因而,謫和互信息也是相關的。因此,數據壓縮和通信中的問題得到廣泛的解釋。我們都有這樣的感受,當研究某個問題時,往往歷經大量的代數運算推理得到了結果,但此時沒有真正了解問題的全莪,最終是通過反復觀察結果,才對整個問題有完整、明確的認識。所以,對一個問題的全面理解,不是靠推理,而是靠對結果的觀察。要更具體地說明這一點,物理學中的牛頓三大定律和薛定諤波動方程也許是最合適的例子。誰曾預見過薛定諤波動方程后來會有如此令人敬畏的哲學解釋呢?

在本書中,我們常會在著眼于問題之前,先了解一下答案的性質。比如第2章中,我們定義熵、相對熵和互信息,研究它們之間的關系,再對這些關系作一點解釋·由此揭示如何融會貫通地使用各式各樣的方法解決實際問題。同理,我們順便探討熱力學第二定律的含義。熵總是增加嗎?答案既肯定也否定。這種結果會令專家感興趣,但初學者或i午認為這是必然的而不會深人考慮。

在實際教學中.教師往往會加人一自己的見解。事實上,尋找無人知道的證明或者有所創新的結果是一件很愉快的事情。如果有人將新的思想和已經證明的內容在課堂上講解給學生,那么不僅學生會積極反饋“對,對,對六而且會大大地提升教授該課程的樂崆我們正是這樣從研究本教材的許多新想法中獲得樂趣的。

本書加人的新素材實例包括信息論與博弈之間的關系,馬爾可夫鏈背景下熱力學第二定律的普遍性問題,信道容量定理的聯合典型性證明,赫夫曼碼的競爭最優性,以及關于最大熵譜密度估計的伯格(回定理的證明。科爾莫戈羅夫復雜度這一章也是本書的獨到之處。面將費希爾信息,互信息、中心極限定理以及布倫一閔可夫斯基不等式與熵冪不等式聯系在一起,也是我們引以為豪之處。令我們感到驚訝的是.關于行列式不等式的許多經典結論,當利用信息論不等式后會很容易得到證明。

自從香農的奠基性論文面世以來,盡管信息論已有了相當大的發展,但我們還是要努力強調它的連貫性。雖然香農創立信息論時受到通信理論中的問題啟發,然而我們認為信息論是一門獨立的學科,可應用于通信理論和統計學中。我們將信息論作為一個學科領域從通信理論、概率論和統計學的背景中獨立出來因為明顯不可能從這些學科中獲得難以理解的信息概念。由于本書中絕大多數結論以定理和證明的形式給出,所以,我們期望通過對這些定理的巧妙證明能說明這些結論的完美性。一般來講,我們在介紹問題之前先描述回題的解的性質,而這些很有的性質會使接下來的證明順理成章。

使用不等式串、中間不加任何文字、最后直接加以解釋,是我們在表述方式上的一項創新希望讀者學習我們所給的證明過程達到一定數量時,在沒有任何解釋的情況下就能理解其中的大部分步,并自己給出所需的解釋這些不等式串好比模擬到試題,讀者可以通過它們確認自己是否已掌握證明那些重要定理的必備知識。這些證明過程的自然流程是如此引人注目,以至于導致我們輕視了寫作技巧中的某條重要原則。由于沒有多余的話,因而突出了思路的邏輯性與主題思想u我們希望當讀者閱讀完本書后,能夠與我們共同分亨我們所推崇的,具有優美、簡潔和自然風格的信息論。

本書廣泛使用弱的典型序列的方法,此概念可以追溯到香農1948年的創造性工作,而它真正得到發展是在20世紀70年代初期。其中的主要思想就是所謂的漸近均分性(AEP),或許可以粗略地說成“幾乎一切事情都是等可能的"

第2章闡述了熵、相對熵和互信息之同的基本代數關系。漸近均分性是第3章重中之重的內容,這也使我們將隨機過程和數據壓縮的熵率分別放在第4章和第5章中論述。第6章介紹博弈,研究了數據壓縮的對偶性和財富的增長率。可作為對信息論進行理性思考基礎的科爾莫戈羅夫復雜度,擁有著巨大的成果,放在第14章中論述。我們的目標是尋找一個通用的最矩描述,而不是平均意義下的次佳描述。的確存在這樣的普遍性概念用來刻畫一個對象的復雜度。該章也論述了神奇數0,揭示數學上的不少奧秘,是圖靈機停止運轉概率的推廣。第7章論述信道容量定理。第8章敘述微分熵的必需知識,它們是將早期容量定理推廣到連續噪聲信道的基礎。基本的高斯信道容量問題在第9章中論述。第il章闡述信息論和統計學之間的關系,20世紀年代初期庫爾貝克首次對此進行了研究,此后相對被忽視。由于率失真理論比無噪聲數據壓縮理論需要更多的背景知識,因而將其放置在正文中比較靠后的第10章。

網絡信息理論是個大的主題,安排在第巧章,主要研究的是噪聲和干擾存在情形下的同時可達的信息流。有許多新的思想在網絡信息理論中開始活躍起來,其主要新要素有干擾和反饋第16章講述股票市場,這是第6章所討論的博弈的推廣,也再次表明了信息論和博弈之間的緊密聯系。第17章講述信息論中的不等式,我們借此一隅把散布于全書中的有趣不等式重新收攏在一個新的框架中,再加上一些關于隨機抽取子集熵率的有趣新不等式。集合和的體積的布倫一閔可夫斯基不等式,獨立隨機變量之和的有效方差的熵冪不等式以及費希爾信息不等式之間的美妙關系也將在此章中得到詳盡的闡述。

本書力求推理嚴密,因此對數學的要求相當高·要求讀者至少學過一學期的概率論課程且有扎實的數學背景,大致為本科高年級或研究生一年級水平。盡管如此,我們還是努力避免使用測度論。因為了解它只對第16章中的遍歷過程的AEP的證明過程起到簡化作用。這符合我們的觀點,那就是信息論基礎與技巧不同,后者才需要將所有推廣都寫進去。

本書的主體是第2,3,4,5,7,8,9,10,11和巧章,它們自成體系,讀懂了它們就可以對信息論有很好的理解。但在我們看來,第14章的科爾莫戈羅夫復雜度是深人理解信息論所需的必備知識。余下的幾章,從博弈到不等式.目的是使主題更加連貫和完美。

付費5元查看完整內容

矩陣代數是數據分析和統計理論中最重要的數學領域之一。這本書的第一部分為統計中的應用提出矩陣代數的理論的相關方面。本部分從向量和向量空間的基本概念開始,接著介紹矩陣的基本代數性質,然后描述向量和矩陣在多元演算中的解析性質,最后討論線性系統解和特征分析中矩陣的運算。這部分基本上是獨立的。

本書的第二部分開始考慮在統計中遇到的各種類型的矩陣,例如投影矩陣和正定矩陣,并描述這些矩陣的特殊性質。第二部分也介紹了矩陣理論在統計中的一些應用,包括線性模型、多元分析和隨機過程。本部分說明了在本書第一部分中發展的矩陣理論。書的前兩個部分可以作為為統計學生的矩陣代數課程的文本,或作為在線性模型或多元統計的各種課程的補充文本。

這本書的第三部分涵蓋了數值線性代數。它以數值計算的基礎討論開始,然后描述精確和有效的算法因式分解矩陣,求解線性方程組,并提取特征值和特征向量。雖然這本書沒有捆綁到任何特定的軟件系統,它描述并給出了使用數字線性代數的現代計算機軟件的例子。這部分基本上是自包含的,盡管它假設有一些能力用Fortran或C編程和/或使用R/S-Plus或Matlab的能力。書的這一部分可以作為在統計計算中的一門課程的文本使用,或者作為強調計算的各種課程的補充文本。

這本書包括大量的練習,并在附錄中提供了一些解決方案。

James E. Gentle是喬治梅森大學計算統計學教授。他是美國統計協會(ASA)和美國科學促進會的會員。他曾在美國標準局擔任過幾個國家職務并擔任過美國標準局期刊的副主編以及其他統計和計算期刊的副主編。他是隨機數生成和蒙特卡羅方法,第二版,和計算統計元素的作者。

付費5元查看完整內容

Python中的數據科學和分析是為學術和商業環境中的數據科學和數據分析從業者設計的。其目的是通過使用Python開發的工具(如SciKit-learn、Pandas、Numpy等)向讀者介紹數據科學中使用的主要概念。鑒于Python最近在數據科學社區的流行,它的使用特別有趣。有經驗的程序員和新手都可以使用這本書。

本書的組織方式是各個章節相互獨立,這樣讀者就可以放心地使用其中的內容作為參考。這本書從過程和獲得的結果的角度討論了什么是數據科學和分析。還介紹了Python的重要特性,包括Python入門。機器學習、模式識別和人工智能的基本元素在書的其余部分使用的算法和實現的基礎上也出現在書的第一部分。

本書的第二部分介紹了使用Python、聚類技術和分類算法的回歸分析。層次聚類、決策樹和集成技術,以及降維技術和推薦系統也被探討。書的最后一部分討論了支持向量機算法和內核技巧。

付費5元查看完整內容

在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。

這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。

讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。

付費5元查看完整內容
北京阿比特科技有限公司