這本書提供了反饋系統設計和分析的基本原則和工具的介紹。它旨在為對理解和利用物理、生物、信息和社會系統反饋感興趣的科學家和工程師提供服務。本書的主要目標是提出一個簡明和深刻的觀點,當前的知識反饋和控制系統。在編寫這本書的過程中,我們試圖通過強調基本概念來濃縮現有的知識。我們認為,理解為什么反饋是有用的,了解控制的語言和基本數學,掌握過去半個世紀發展起來的關鍵范式是很重要的。能夠使用粗略的技術解決簡單的反饋問題,認識基本的限制和困難的控制問題,并對可用的設計方法有一種感覺,這也很重要。
//www.cds.caltech.edu/~murray/amwiki/index.php/Second_Edition
當我開始教計算物理時,我面臨的第一個決定是“我應該使用哪種語言?”由于有大量的優秀編程語言可用,這并不是一個顯而易見的選擇。我想用一種通用的語言來教授這門課,這樣學生就可以很容易地利用他們在這門課上獲得的技能,在物理以外的領域。該語言必須能夠在所有主要的操作系統上使用。最后,語言必須是自由的。我想給學生們提供一種不用花錢就能使用的技能!大約在我的第一門計算物理課程開始前的一個月,Bruce Sherwood和Ruth Chabay向我介紹了Python,我立刻意識到這就是我的課程需要的語言。它簡單易學;它也很容易閱讀其他程序員用Python編寫的代碼,并弄清楚它是做什么的。它的空格特定格式迫使新程序員編寫可讀的代碼。有一些數字圖書館,正好是我需要的課程。它是免費的,可以在所有主要的操作系統上使用。雖然它足夠簡單,可以讓沒有編程經驗的學生在課程的早期解決有趣的問題,但它的功能足夠強大,可以用于“嚴肅的”物理數值工作——而天體物理學社區正是為此使用它。最后,Python是以我最喜歡的英國喜劇劇團命名的。有什么理由不喜歡呢?
使用計算和模擬已經成為科學過程中必不可少的一部分。要將理論轉化為算法,需要有重要的理論洞察力,詳細的物理和數學理解,以及編程能力的工作水平。本文從多學科、計算科學的角度,對現代計算物理學的主題進行了不同尋常的廣泛調研。它的哲學植根于通過做來學習(借助許多模型程序),利用新的科學材料以及Python編程語言。Python已經變得非常流行,特別是在物理教育和大型科學項目中。對于初學者來說,它可能是最容易學習的編程語言,但它也用于主流的科學計算,并且有優秀的圖形甚至符號操作包。
在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。
//www0.cs.ucl.ac.uk/staff/d.barber/brml/
本書結構
本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。
第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。
機器學習是關于基于數據的學習、推理和行動。這是通過構建計算機程序來完成的,這些程序可以處理數據,提取有用的信息,對未知屬性做出預測,并建議采取的行動或做出的決定。將數據分析變成機器學習的原因是,這個過程是自動化的,計算機程序是從數據中學習的。這意味著使用通用計算機程序,這些程序根據觀察到的所謂訓練數據自動調整程序的設置,以適應特定的應用程序環境。因此可以說,機器學習是一種通過實例編程的方式。機器學習的美妙之處在于,數據所代表的內容是非常隨意的,我們可以設計出適用于不同領域的廣泛實際應用的通用方法。我們通過下面的一系列例子來說明這一點。上述“通用計算機程序”是指數據的數學模型。也就是說,當我們開發和描述不同的機器學習方法時,我們使用的是數學語言。數學模型描述了與觀測數據對應的相關數量或變量與感興趣的屬性(如預測、動作等)之間的關系。因此,模型是數據的緊湊表示,以精確的數學形式捕捉我們正在研究的現象的關鍵屬性。使用哪個模型通常由機器學習工程師在查看可用數據時產生的見解和從業者對問題的總體理解來指導。在實踐中實現該方法時,將該數學模型轉換為可在計算機上執行的代碼。然而,要理解計算機程序的實際作用,了解其基礎數學也很重要。
這本書的目的是介紹監督機器學習,而不需要在該領域的任何經驗。我們既關注基礎的數學,也關注實踐方面。本書是教科書,不是參考書,也不是編程手冊。因此,它只包含一個仔細(但全面)的監督機器學習方法的選擇,而沒有編程代碼。現在有許多精彩和證據確鑿的代碼包可用,我們深信,在很好地理解數學和內部運行的方法。在這本書中,我們從統計學的角度來討論方法的統計特性。因此,它需要一些統計和概率論的知識,以及微積分和線性代數。我們希望,從頭到尾閱讀這本書將給讀者一個良好的起點,作為一個機器學習工程師工作和/或繼續在該學科的進一步研究。下圖說明了章節之間的主要依賴關系。特別是在第二、三、四章中討論了最基本的主題,我們建議讀者先閱讀這些章節,然后再閱讀后面包含更高級的主題的章節(第5-9章)。第10章超越了機器學習的監督設置,第11章關注于設計一個成功的機器學習解決方案的一些更實際的方面,比前幾章的技術性更少。最后,第十二章(由David Sumpter撰寫)討論了現代機器學習的某些倫理方面。
意識被廣泛認為是我們這個時代最基本、最有趣和最困難的問題之一。然而,我們對意識和大腦之間的關系幾乎一無所知,我們只能推測動物和機器的意識。
人類和機器意識為意識的科學研究提供了新的基礎。它提出了一個大膽的解釋意識,中立的哲學問題,并解釋了我們如何才能作出科學預測意識的動物,腦損傷的病人和機器。
Gamez將意識的科學研究解釋為尋找在意識測量和物理世界測量之間映射的數學理論。我們可以利用人工智能來發現這些理論,它們可以對人類、動物和人工系統的意識做出準確的預測。人類和機器意識也為不尋常的意識體驗提供了獨到的見解,如幻覺、宗教體驗和身體外狀態,并展示了未來如何創造“設計師”意識狀態。
Gamez以一種與科學研究密切相關的清晰方式解釋有難度的概念。他有力、簡潔的散文充滿了生動的例子,使之適合受過教育的普通讀者以及哲學家和科學家。問題被帶到生活中的彩色插圖和一個有益的總結是在每一章的結尾。
約束優化已經成為一個很好的研究領域,有一些強大的技術可以解決該領域的一般問題。在這本書中,考慮了一類特殊的約束,稱為幾何約束,它表示優化問題的解在流形上。這是一個最近的研究領域,它為更一般的約束優化方法提供了強大的替代方案。經典的約束優化技術適用于比流形大得多的嵌入式空間。因此,在流形上工作的優化算法具有較低的復雜性,而且通常還具有更好的數值特性(例如,保持能量等不變量的數值積分方案)。作者將此稱為受限搜索空間中的無約束優化。
可以用流形來描述差分方程或微分方程的思想起源于布羅克特、弗拉施卡和魯提肖瑟的工作。例如,他們描述了等譜流,這些流產生的時變矩陣彼此相似,最終收斂到有序特征值的對角矩陣。這些想法在數值線性代數領域沒有像在動力系統領域那樣得到那么多的關注,因為由此產生的差分和微分方程并沒有立即導致有效的算法實現。
這本書對發展高階優化技術的微分幾何的進行了深入的介紹,但它仍然成功地用簡單的想法解釋復雜的概念。這些思想隨后被用于發展牛頓型方法以及其他超線性方法,如信賴域方法和非精確和準牛頓方法,這些方法更加強調概念算法的高效數值實現。
這新版本的教科書/參考提供了從工程的角度對概率圖模型(PGMs)的介紹。它提供了關于馬爾科夫決策過程、圖模型和深度學習的新材料,以及更多的練習。
這本書涵蓋了PGM的每個主要類的基礎知識,包括表示、推理和學習原理,并回顧了每種類型的模型的實際應用。這些應用來自廣泛的學科,突出了貝葉斯分類器、隱藏馬爾可夫模型、貝葉斯網絡、動態和時間貝葉斯網絡、馬爾可夫隨機場、影響圖和馬爾可夫決策過程的許多使用。
概率圖模型(PGMs)及其在不確定性下進行智能推理的應用出現于20世紀80年代的統計和人工智能推理領域。人工智能的不確定性(UAI)會議成為這一蓬勃發展的研究領域的首要論壇。20歲的時候,我在圣何塞的UAI-92大學第一次見到了恩里克·蘇卡——我們都是研究生——在那里,他展示了他關于高層次視覺推理的關系和時間模型的研究成果。在過去的25年里,Enrique對我們的領域做出了令人印象深刻的研究貢獻,從客觀概率的基礎工作,到開發時態和事件貝葉斯網絡等高級形式的PGMS,再到PGMS的學習,例如,他的最新研究成果是用于多維分類的貝葉斯鏈分類器。
概率圖模型作為一種強大而成熟的不確定性推理技術已被廣泛接受。與早期專家系統中采用的一些特殊方法不同,PGM基于圖和概率論的強大數學基礎。它們可用于廣泛的推理任務,包括預測、監測、診斷、風險評估和決策。在開源軟件和商業軟件中有許多有效的推理和學習算法。此外,它們的力量和功效已通過其成功應用于大量現實世界的問題領域而得到證明。Enrique Sucar是PGM作為實用和有用技術建立的主要貢獻者,他的工作跨越了廣泛的應用領域。這些領域包括醫學、康復和護理、機器人和視覺、教育、可靠性分析以及從石油生產到發電廠的工業應用。
近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。
//compstat-lmu.github.io/seminar_nlp_ss20/
在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。
這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。
為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。
遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。
為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。
在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。
本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。
機器學習和人工神經網絡無處不在,它們對我們日常生活的影響比我們可能意識到的還要深遠。這堂課是專門針對機器學習在不同科學領域的使用的介紹。在科學研究中,我們看到機器學習的應用越來越多,反映了工業技術的發展。這樣一來,機器學習就成為了精確科學的通用新工具,與微積分、傳統統計學和數值模擬等方法并行其道。這就提出了一個問題,在圖2所示的科學工作流程中,這些新方法是最好的。
此外,一旦確定了一項特定的任務,將機器學習應用到科學領域就會面臨非常具體的挑戰: (i) 科學數據通常具有非常特定的結構,例如晶體圖像中近乎完美的周期性; (ii) 通常情況下,我們對應該反映在機器學習分析中的數據相關性有特定的知識; (iii) 我們想要了解為什么一個特定的算法會起作用,尋求對自然機制和法則的基本見解; (iv) 在科學領域,我們習慣于算法和定律提供確定性答案,而機器學習本質上是概率性的——不存在絕對的確定性。盡管如此,定量精度在許多科學領域是至關重要的,因此是機器學習方法的一個關鍵基準。
這堂課是為科學領域的科學家和學生介紹基本機器學習算法。我們將涵蓋:
機器學習領域充滿了行話,對于不了解機器學習的人來說,這些行話掩蓋了機器學習方法的核心。作為一個不斷變化的領域,新的術語正在以快速的速度被引入。我們的目標是通過精確的數學公式和簡潔的公式來切入俚語,為那些了解微積分和線性代數的人揭開機器學習概念的神秘面紗。
如上所述,數據是本節課所討論的大多數機器學習方法的核心。由于原始數據在很多情況下非常復雜和高維,首先更好地理解數據并降低它們的維數往往是至關重要的。下一節,第2節將討論在轉向神經網絡的重型機器之前可以使用的簡單算法。
我們最關注的機器學習算法,一般可以分為兩類算法,即判別算法和生成算法,如圖3所示。判別任務的例子包括分類問題,如上述數字分類或分類為固體,液體和氣相給出一些實驗觀測。同樣,回歸,也就是估計變量之間的關系,也是一個判別問題。更具體地說,我們在給定一些輸入數據x的情況下,嘗試近似某個變量y (label)的條件概率分布P(y|x)。由于這些任務中的大部分數據都是以輸入數據和目標數據的形式提供的,這些算法通常采用監督學習。判別算法最直接地適用于科學,我們將在第3和第4節中討論它們。
人工智能的前景可能引發科學領域的不合理預期。畢竟,科學知識的產生是最復雜的智力過程之一。計算機算法肯定還遠沒有達到那樣復雜的水平,而且在不久的將來也不會獨立地制定新的自然法則。盡管如此,研究人員研究了機器學習如何幫助科學工作流程的各個部分(圖2)。雖然制定牛頓經典力學定律所需的抽象類型似乎難以置信地復雜,但神經網絡非常擅長隱式知識表示。然而,要準確地理解它們是如何完成某些任務的,并不是一件容易的事情。我們將在第6節討論這個可解釋的問題。
第三類算法被稱為強化學習(reinforcement learning),它不完全符合近似統計模型的框架. 機器學習的成功很大程度上與科學家使用適當算法的經驗有關。因此,我們強烈建議認真解決伴隨練習,并充分利用練習課程。
和其他主要語言一樣,掌握C語言可以帶你去一些非常有趣的新地方。在它首次出現近50年后,它仍然是世界上最流行的編程語言,并被用作全球工業核心系統的基礎,包括操作系統、高性能圖形應用程序和微控制器。這意味著,在尖端產業的尖端領域,如游戲、應用程序開發、電信、工程、甚至動畫制作,都需要熟練的C語言用戶來將創新的想法轉化為順利運行的現實。
為了幫助您達到使用C語言的目的,第2版《C Programming For Dummies》涵蓋了開始編寫程序所需的所有內容,從邏輯上指導您完成開發周期:從最初的設計和測試到部署和實時迭代。到最后,您將熟練地掌握干凈的編程應該做什么和不應該做什么,并且能夠輕松地生成優雅而高效的源代碼的基本(或不那么基本)構建塊。
編寫和編譯源代碼 鏈接代碼以創建可執行程序 調試和優化您的代碼 避免常見的錯誤
無論你的目的地是科技行業、初創企業,還是只是為了在家消遣而開發,這本易于遵循、內容豐富、有趣的C編程語言指南都是實現這一目標最快、最友好的方式!
//file.allitebooks.com/20201014/C%20Programming%20For%20Dummies,%202nd%20Edition.epub
從生態系統中的捕食者-被捕食者數量,到體內的激素調節,自然界中充滿了對我們產生深遠影響的動力系統。這本書為在生命科學中描述這些相互作用的系統并理解和預測他們的行為的學生開發必要的數學工具。復雜的反饋關系和反直覺的反應在自然界的動力系統中是常見的; 這本書發展了需要探索這些相互作用的定量技能。
微分方程是量化變化的自然數學工具,也是貫穿全書的驅動力。歐拉方法的使用使非線性實例易于處理,并可用于早期本科生的廣泛范圍,從而提供了一種實用的替代傳統微積分課程的程序方法。工具是在大量的,相關的例子中開發的,并強調整個數學模型的構建、評估和解釋。在情境中遇到這些概念,學生不僅學習定量技術,而且學習如何在生物學和數學思維方式之間架起橋梁。
例子范圍廣泛,探索神經元和免疫系統的動力學,通過人口動力學和谷歌PageRank算法。每個場景只依賴于對自然世界的興趣;學生或教師不假定有生物學專業知識。建立在一個單一的預微積分的前提下,這本書適合兩個季度的序列為一或二年級本科生,并滿足數學要求的醫學院入學。后面的材料為數學和生命科學的更高級的學生提供了機會,在一個豐富的、真實世界的框架中重溫理論知識。在所有情況下,焦點都很清楚:數學如何幫助我們理解科學?