任務規劃涉及將離散資產分配給優先目標,包括在復雜的環境條件下將這些資產動態路由到目的地。由于快速周轉的價值和模擬作戰環境的相對簡單性,人們非常有興趣通過添加人工智能 (AI) 的強化學習技術來改進任務規劃過程,這可以產生更好、更快或只是人類考慮的獨特解決方案。本報告描述了如何使用人工智能進行任務規劃,以及人工智能方法與更傳統的運籌學 (OR) 方法的比較。
任務規劃涉及將離散資產分配給優先目標,包括在復雜的環境條件下將這些資產動態路由到目的地。由于快速周轉的價值和模擬作戰環境的相對簡單性,人們非常有興趣通過添加人工智能 (AI) 的強化學習技術來改進任務規劃過程,這可以產生更好、更快或只是人類考慮的獨特解決方案。本報告描述了如何使用人工智能進行任務規劃,以及人工智能方法與更傳統的運籌學 (OR) 方法的比較。
本報告是五卷系列中的第五卷,探討了如何利用人工智能在四個不同領域協助作戰人員:網絡安全、預測性維護、兵棋推演和任務規劃。本報告主要針對那些對任務規劃、運籌學和人工智能應用感興趣的人。
本研究探討了如何將移動與機動這一在動能環境中行之有效的作戰功能應用到網絡領域。復雜的網絡應對措施,如屬于移動與機動(M&M)戰術的應對措施,可用于防御性網絡作戰(DCO),使網絡更加敏捷、靈活和堅固,以抵御攻擊。然而,由于此類網絡的靜態性質、對特定設備專業知識的需求以及進行網絡更改所需的人員組織協調,傳統能力使 M&M 戰術難以實施。
為解決這一問題,建議使用軟件定義網絡(SDN)來實施網絡移動和機動(網絡 M&M)行動。SDN 具有多種功能,有助于支持各種防御性網絡移動和機動戰術,如防火墻、節流、中間人、重定向和源隱藏。在這項工作中,利用 SDN 設備將數據包移動引導到一個單獨的設備,該設備可提供有針對性的網絡防御響應(機動)。為便于共享網絡 M&M,開發了一種經過修訂的開放式指揮與控制(OpenC2)SDN 方案,該方案特別適合網絡響應的需要。采用標準化模式的動機是以一種與設備無關的方式促進盟友之間的網絡響應通信。這項工作的成果已與技術合作計劃(TTCP)社區分享,作為網絡感知與執行(NWSE)活動的一部分。
圖 5:網絡 M&M 防御架構選項:上圖:直接驅動,中間:間接驅動,下圖:帶代理的間接驅動。
美國空軍越來越關注人工智能(AI)在增強作戰各方面能力方面的潛力。在這個項目中,空軍要求蘭德公司的研究人員考慮人工智能無法做到的事情,以了解人工智能在作戰應用中的局限性。
研究人員沒有試圖確定人工智能的一般限制,而是選擇并調查了四個具體的作戰應用作為潛在用例:網絡安全、預測性維護、兵棋推演和任務規劃。選擇這些應用是為了代表各種可能的用途,同時突出不同的限制因素。在可以獲得足夠數據的三個案例中進行了人工智能實驗;剩下的兵棋推演案例則廣泛探討了如何應用或不能應用人工智能。
本報告是五卷系列中的第一卷,總結了所有應用案例的研究結果和建議。報告面向政策制定者、采購專業人員以及對將人工智能應用于作戰普遍感興趣的人員。
美國空軍(USAF)在部署飛行單元時會配備備戰備件包(RSP),以確保這些單元儲備有足夠的零部件,能夠在 30 天內自給自足。預測哪些部件可能會出現故障--因此,哪些部件應列入備件包--是非常重要的,因為儲備過多可能會導致費用高昂,而儲備不足則會威脅到任務準備狀態。本報告討論了是否以及何時可以使用人工智能(AI)方法來改進零件故障分析,目前的零件故障分析使用的是假定概率分布的模型。為此,我們開發了幾種機器學習模型,并在歷史數據上進行了測試,以 A-10C 飛機數據為測試案例,將其性能與美國空軍目前使用的優化和預測軟件進行比較。
本報告是五卷系列報告中的第三卷,論述了如何利用人工智能在網絡安全、預測性維護、兵棋推演和任務規劃等四個不同領域為作戰人員提供幫助。本報告主要面向那些對預測性維護、RSP 和更廣泛的人工智能應用感興趣的人。
作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。
在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。
通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。
本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。
在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。
人工智能解決方案在陸軍野戰應用中的使用將在很大程度上依賴于機器學習(ML)算法。當前的ML算法需要大量與任務相關的訓練數據,以使其在目標和活動識別以及高級決策等任務中表現出色。戰場數據源可能是異構的,包含多種傳感模式。目前用于訓練ML方法的開源數據集在內容和傳感模式方面都不能充分反映陸軍感興趣的場景和情況。目前正在推動使用合成數據來彌補與未來軍事多域作戰相關的真實世界訓練數據的不足。然而,目前還沒有系統的合成數據生成方法,能夠在一定程度上保證在此類數據上訓練的ML技術能夠改善真實世界的性能。與人工生成人類認為逼真的語音或圖像相比,本文為ML生成有效合成數據提出了更深層次的問題。
人工智能(AI)是美國國防現代化的優先事項。美國國防部的人工智能戰略指示該部門加快采用人工智能并創建一支適合時代的部隊。因此,它自然也是陸軍現代化的優先事項。從陸軍多域作戰(MDO)的角度來看,人工智能是解決問題的重要因素,而MDO是建立在與對手交戰的分層對峙基礎上的。雖然人工智能本身沒有一個簡明和普遍接受的定義,但國防部人工智能戰略文件將其稱為 "機器執行通常需要人類智能的任務的能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動--無論是以數字方式還是作為自主物理系統背后的智能軟件"。這句話的意思是,當機器在沒有人類幫助的情況下獨立完成這些任務時,它就表現出了智能。過去十年中出現的人工智能解決方案的一個重要方面是,它們絕大多數都符合模式識別模式;在大多數情況下,它們根據經過訓練的人工神經網絡(ANN)對相同輸入數據的輸出結果,將輸入數據分配到數據類別中。具體來說,深度學習神經網絡(DNN)由多層人工神經元和連接權重組成,最初在已知類別的大量數據上進行訓練以確定權重,然后用于對應用中的實際輸入數據進行分類。因此,機器學習(ML),即自動機(這里指DNN)在訓練階段學習模式的過程,一直是一個主導主題。事實上,DNN在計算機視覺領域的成功是商業和政府部門加大對人工智能關注和投資的原因。訓練算法和軟件開發工具(如tensorflow)的進步、圖形處理器(GPU)等計算能力的可用性,以及通過社交媒體等途徑獲取大量數據,使得深度學習模型在許多應用中得到了快速探索。
在監督學習中,人類專家創建一組樣本來訓練ML算法,訓練數據與實際應用數據的接近程度對人工智能方法的性能起著重要作用。將ML模型應用于軍事問題的主要瓶頸是缺乏足夠數量的代表性數據來訓練這些模型。有人提出使用合成數據作為一種變通辦法。合成數據集具有某些優勢:
然而,最關鍵的問題是在合成數據或混合合成和真實數據上訓練ML模型是否能使這些模型在真實數據上表現良好。美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員和合作者使用合成生成的人類視頻進行機器人手勢識別所獲得的初步結果表明,在合成數據和真實數據混合的基礎上進行訓練可以提高ML手勢識別器的性能。然而,并沒有普遍或分類的結果表明,當全部或部分使用合成數據進行訓練時,真實世界的ML性能會得到一致的提高。因此,有必要進行系統調查,以確定使用合成數據訓練ML方法的可信度。我們有理由假設,合成數據在提高ML性能方面的有效性將受到實際應用領域、合成數據與真實數據的保真度、訓練機制以及ML方法本身等因素的影響。合成數據與真實數據的保真度反過來又取決于數據合成方法,并提出了通過適當指標評估保真度的問題。以圖像為例,合成數據訓練的ML方法的性能與人類視覺感知的真實場景的保真度是否成正比并不清楚。有可能數據的一些關鍵特征對于ML的性能比那些影響人類感知的特征更為重要。組織這次陸軍科學規劃和戰略會議(ASPSM)的一個主要目的是讓合成數據生成、人工智能和機器學習(AI & ML)以及人類感知方面的頂尖學術界和國防部專家討論這些問題。會議的技術重點主要是圖像和視頻數據,反映了組織者在計算機視覺和場景感知方面的任務領域。
根據上一節提出的問題,會議圍繞三個主題展開:
1.人類的學習和概括: 人類可以從最小的抽象和描述概括到復雜的對象。例如,在許多情況下,觀察一個物體的卡通圖像或線描,就足以讓人類在真實場景中識別出實際的三維物體,盡管后者比卡通圖像或線描具有更復雜的屬性。 這遠遠超出了當前人工智能和ML系統的能力。如果能夠開發出這種能力,將大大減輕數據合成機器的負擔,確保真實數據的所有屬性都嚴格保真。這個例子也說明了一個事實,即用于訓練ML模型的合成數據生成研究與提高ML模型本身的能力密切相關。因此,這項研究的重點是探索人類和動物的學習,以啟發ML和數據合成的新方法。
2.數據合成方法和驗證: 大多數應用ML方法的領域都有針對其領域的數據合成技術和工具。游戲平臺提供了一個流行的視頻合成商業范例。問題是如何評估特定領域中不同合成方法的性能。顯然,我們必須確定執行此類評估的指標或標準。通常情況下,合成工具的作者也會就工具的性能或功效發表聲明。驗證將是評估此類聲明的過程。本研究的目的是探討指導合成和驗證過程的原則。合成技術的例子包括基于計算機圖形的渲染器(如電影中使用的)、基于物理的模擬(如紅外圖像)和生成模型(目前傾向于基于神經網絡)。
3.領域適應挑戰: ML中的領域適應是指使用一個領域(稱為源領域)的數據訓練ML模型,然后將ML應用于不同但相關領域(稱為目標領域)的數據。例如,使用主要為民用車輛的源圖像數據集訓練識別車輛的ML算法,然后使用訓練好的算法識別主要為軍用車輛的目標數據集中的車輛。在使用合成數據進行訓練時,它們通常構成源域,而實際應用數據則是目標域。本次會議的重點是確定和討論有效領域適應中的關鍵問題和挑戰。
ASPSM的審議分四次會議進行。第一天的兩場會議討論了前兩個主題。第二天的第一場會議討論第三個主題,第二場會議在三個主題下進行分組討論。ASPSM兩天的日程安排分別如圖1和圖2所示。從圖中可以看出,每個主題會議首先由該領域的學術專家進行40分鐘的主講,然后由大學專家進行兩個20分鐘的講座。隨后由來自學術界和國防部的專家組成的小組進行討論。最后一個環節是分組討論,與會者可以討論與主題相關的各個方面。
麻省理工學院電子工程與計算機科學系的Antonio Torralba教授在第一分會場發表了關于人類學習與泛化的主題演講。他的演講題目是 "從視覺、觸覺和聽覺中學習",深入探討了深度學習方法如何在不使用大量標注訓練數據的情況下發現有意義的場景表征。舉例說明了他們的DNN如何在視覺場景和環境中的聲音之間建立聯系。讀者可參閱Aytar等人關于這一主題的代表性文章。
同樣來自麻省理工學院的James DiCarlo博士的下一個演講題目是 "視覺智能逆向工程"。他將 "逆向工程 "定義為根據對行為的觀察和對輸入的反應推斷大腦的內部過程,將 "正向工程 "定義為創建ANN模型,以便在相同輸入的情況下產生相應的行為。他的研究小組的一個目標是建立神經認知任務的性能基準,人類或其他靈長類動物以及ML模型可以同時達到這些基準。他的演講展示了大腦處理模型如何適應ANN實現的初步結果,并提出了ANN通過結合這些適應密切模擬人類行為,進而準確描述大腦功能的理由。
第一場會議的第三場講座由加州大學伯克利分校的Jitendra Malik教授主講,題為 "圖靈的嬰兒"。這個題目也許是指最早的電子存儲程序計算機之一,綽號 "寶貝",其創造者之一受到了阿蘭-圖靈的啟發。馬利克教授首先引用了圖靈的觀點:與其創建一個模擬成人思維的程序,不如從模擬兒童思維開始。從本質上講,這意味著創造一種人工智能,通過與環境互動以及向其他人工智能和人類學習來學習和成長。這被稱為具身機器智能。馬利克教授認為,監督學習本質上是處理靜態數據集,因此顯示了在精心策劃的時間點上運行的非實體智能。具體而言,他認為監督訓練方法不適合創建能夠提供人類水平的世界理解,特別是人類行為理解的人工智能。Malik教授介紹了 "Habitat",這是一個由他和他的合作者開發的平臺,用于嵌入式人工智能的研究。在隨后的小組討論中,與會人員討論了演講者所涉及的主題,以及與機器人學習和當前兒童智力發展模型相關的主題。
第二部分“數據合成:方法和驗證”以一個題為“學習生成還是生成學習?”,作者是斯坦福大學的Leonidas gu教授。在研究用于訓練ML的合成數據生成的動機中,他指出可以減輕大量人工注釋訓練數據的負擔。他的前提是,無論合成數據是用于訓練ML還是供人類使用,其生成效率和真實性都非常重要。不過,他表示其他質量指標還沒有得到很好的定義,需要進一步研究。他舉例說明了在混合合成數據和真實數據上訓練ML時,ML的物體識別性能有所提高,但他也承認很難得出可推廣的結論。
卡內基梅隆大學的Jessica Hodgins博士發表了第二場會議的第二個演講,題為 "生成和使用合成數據進行訓練"。演講展示了她的研究小組生成的精細合成場景。利用從真實場景到合成場景的風格轉移過程,她的研究小組創造了一些實例,說明在混合了大量風格適應的合成數據和一些真實數據的基礎上進行訓練的ML方法的性能優于僅在真實數據集或僅在合成數據集上進行訓練的方法。性能提高的原因在于風格轉移克服了合成數據集與真實數據集之間的 "分布差距"。
第二場會議的最后一場講座由加州大學伯克利分校的Trevor Darrell教授主講。他的演講題為 "生成、增強和調整復雜場景",分為三個部分。第一部分詳細介紹了演講者及其核心研究人員開發的一種名為 "語義瓶頸場景生成 "的技術,用于根據地面實況標簽合成場景。該技術可進一步與通過生成過程生成此類地面標簽的模型相結合。Azadi等人對該技術進行了詳細描述。 第二部分涉及增強和自我監督學習。發言人提出,當前的對比學習方法在合成增強數據時建立了不變量,而這些不變量可能是有益的,也可能是無益的。例如,建立旋轉不變性可能有利于識別場景中的花朵,但可能會阻礙對特定方向物體的有效識別。演講者介紹了他的研究小組考慮具有特定不變性的多種學習路徑的方法,并展示了與現有技術相比性能有所提高的結果。 第三部分介紹了一種名為 "Tent"(測試熵)的技術。其前提是DNN應用過程中遇到的數據分布可能與訓練數據不同,從而導致性能下降。因此,需要對DNN參數進行實時或測試時調整,以防止性能下降。Tent技術通過調整權重使DNN輸出的測量熵最小化來實現這一目標。演講者隨后用常用數據集展示了該技術相對于先前方法的改進性能。隨后的小組討論涉及合成方面的挑戰,尤其是紅外圖像方面的挑戰。
第二天的第三場會議以 "領域轉移的挑戰 "開始。約翰霍普金斯大學布隆伯格特聘教授Rama Chellappa博士發表了題為 "解決美國防部實際問題的綜合數據期望與最大化"的演講。演講首先回顧了過去二十年來國防部處理合成圖像的多個項目的歷史。他提出了一個重要論斷,即如果在合成過程中考慮到真實數據的物理特性,那么真實數據和合成數據之間的領域轉換就會減少。Chellappa教授還就領域自適應表示法提供了快速教程,涵蓋了正規數學方法以及較新的生成對抗網絡(GANs)。演講者及其核心研究人員開發的基于GAN的方法可以修改合成數據的分布,使之與目標分布相匹配。講座舉例說明了這種方法優于之前的非GAN方法。
佐治亞理工學院的Judy Hoffman教授發表了題為 "從多個數據源進行泛化的挑戰 "的演講。她考慮的問題是在模擬中學習模型,然后將模型應用于現實世界。她指出了四個挑戰: 生成、列舉、泛化和適應。發言人介紹了應對這些挑戰的幾種不同方法。具體來說,用于泛化的特定領域掩碼(DMG)方法通過平衡特定領域和領域不變特征表征來生成一個能夠提供有效領域泛化的單一模型,從而解決多源領域學習問題。
第三場會議的第三位也是最后一位演講者是波士頓大學的Kate Saenko教授,他的演講題目是 "圖像分類和分割的Sim2Real領域轉移的最新進展和挑戰"。Saenko教授延續了前兩場講座的主題,介紹了視覺領域適應的歷史,并探討了領域和數據集偏差問題。在糾正數據集偏差的不同方法中,講座詳細討論了領域適應。特別重要的是,Saenko教授及其合作者開發的技術能夠顯示合成到真實的適應性,就像從游戲引擎到真實數據一樣。隨后的小組討論提出了幾個有趣的問題,包括訓練域和測試域的不同,不是感興趣的對象不同,而是對象所處的環境不同,例如訓練時軍用車輛在沙漠環境中,而測試時則在熱帶植被背景中。
三個主題的分組討論同時進行。在 "人類學習與泛化 "分組討論中,首先討論了 "人類如何學習?"、"ML模型如何模仿人類過程?"以及 "合成數據如何實現這些過程?"等問題。從童年到青春期和成年期,學習和成長之間的關系成為關鍵點。其他被認為有助于人類學習的因素包括人類心理、情感、同時參與多維活動、記憶以及解除學習的能力。
關于 "數據綜合: 方法與驗證 "分論壇確定了數據合成的幾個問題,特別是圖像和視頻。主要問題涉及結合物理學的有用性、視覺外觀保真度與成本之間的權衡、保真度的衡量標準、保真度本身的重要性以及當前技術(包括GANs技術)的局限性。據觀察,合成圖像和視頻生成至少已有幾十年的歷史,但大多數產品要么是為視覺效果而設計,要么是為再現物理測量而設計(例如,紅外模擬中的輻射剖面)。它們并不適合用于ML培訓。提出的另一個問題是,合成的二維圖像必須與物體和環境的底層三維幾何圖形保持一致。還有人提出,能夠在特定的感興趣的環境中生成大量合成數據,可以作為第一道工序測試新的人工智能和ML方法,而不管這些方法是否能夠在真實數據中很好地工作。
專題3 "領域轉移挑戰 "的分組討論確定了MDO所需的關鍵人工智能能力,即從孤立學習到機器與人類之間的聯合或協作學習。會議還討論了在多種數據模式下同時訓練ML的聯合學習。人們認識到,這些領域的工作才剛剛開始。分組討論的牽頭人強調,需要向士兵明確說明基于人工智能的系統在特定情況下將會做什么。這引發了對系統魯棒性的討論。分組組長向ASPSM聽眾提供了討論摘要。
根據本次ASPSM的討論,我們確定了以下值得陸軍進一步進行科技投資的領域:
1.支持多模式互動學習的合成技術和數據集。與當前流行的捕捉 "時間瞬間 "的靜態數據集(如農村環境中的車輛圖像)相比,有必要開發更能代表支持持續學習的體現性體驗的模擬器,就像我們在人類身上看到的那樣,并實現對世界更豐富的表征。混合方法(如增強現實)也可將人類監督的優勢與合成環境的靈活性結合起來。
2.學習和合成因果關系和層次關系的算法和架構。最近的一些方法,如基于圖的卷積神經網絡,已經在學習空間和時間的層次關系(如物體-部件和因果關系)方面顯示出前景。鑒于在現實世界中收集和注釋此類數據的復雜性,合成數據的生成可能特別有用。識別層次關系是一般國防部和戰場情報分析的關鍵要素。
3.支持持續、增量、多模態學習的算法和架構。深度強化學習方法被成功地用于訓練虛擬或機器人代理的相關行動策略,如捕食者與獵物之間的相互作用。基于模仿的方法承認學習的社會性,通常讓代理與(通常是人類)教師合作學習新策略。這些類型的交互式持續學習可進一步與多模態學習(即融合來自多個傳感器的數據)相結合,以實現更豐富的世界表征,使其更穩健、更具通用性。同樣,在這一領域難以獲得大量經過整理的數據,這也為探索合成引擎提供了動力。
4.學習物理或具備相關物理領域知識的算法和架構。在許多領域(例如紅外光下的物體感知),從圖像感知和合成圖像需要了解世界的基本物理特性,例如光與材料之間的相互作用。然而,當前的深度學習模型缺乏這種物理知識。開發賦予ML物理領域知識的技術對這些系統的性能至關重要。
5.具有豐富中間表征的領域適應技術。為了縮小真實數據和合成數據之間的領域差距,必須進一步推動當前建立領域不變中間表征的趨勢,特別是使用語義詞典和生成式對抗網絡。能夠理解數據底層結構(如光照、旋轉、顏色)的表征更有可能成功抽象出合成數據中不重要的細節。
6.深入了解ML模型內部表征的方法,以及合成表征與真實表征的比較。網絡剖析技術 "打開 "了深度學習模型的隱藏層,允許解釋網絡中的每個階段正在學習哪些特定概念或其更細的方面。這些技術揭示了具有真實輸入和合成輸入的DNN的內部表征,有助于識別所學內容的關鍵差異,從而找到克服這些差異的解決方案。
為期兩天的虛擬ASPSM吸引了眾多美國防部科學家和工程師、頂尖學術專家以及科技項目管理人員的熱情參與。多學科的討論強化了這樣一種觀點,即開發用于訓練ML方法的生成合成數據的改進方法與理解和改進ML方法本身是分不開的。一個特別重要的需求是了解ML方法,尤其是當前的學習架構,是如何創建場景的內部表示的。另外兩個重要領域是:1)理解人類學習與ML世界中可能存在的學習之間的異同;2)多模態數據--從合成和ML的角度。我們預計近期國防部和學術研究人員將在本報告確定的領域加強合作。
戰斗機飛行員通常使用模擬器來練習他們需要的戰術、技術和程序。訓練可能涉及計算機生成的力量,由預定的行為模型控制。這種行為模型通常是通過從有經驗的飛行員那里獲取知識而手工制作的,并且需要很長的時間來開發。盡管如此,這些行為模型由于其可預測性和缺乏適應性而通常是不夠的,教官必須花時間手動監測和控制這些力量的各個方面。然而,最近人工智能(Al)研究的進展已經開發出能夠產生智能代理的方法,在復雜的游戲(如圍棋和《星際爭霸II》)中擊敗人類專家玩家。
同樣,人們可以利用人工智能的方法來組成空戰的高級行為模型,使教官能夠更專注于飛行員的訓練進展,而不是手動控制他們的對手和隊友。這種智能行為必須表現得逼真,并遵循正確的軍事理論,以證明對飛行員訓練是有用的。實現這一目標的一個可能方法是通過模仿學習,這是一種機器學習(ML)類型,代理學習模仿專家飛行員提供的例子。
本報告總結了使用模仿學習技術優化空戰行為模型的工作。這些行為模型被表述為控制計算機生成的部隊的行為轉換網絡(BTN),由下一代威脅系統(NGTS)模擬,這是一個主要針對空域的軍事模擬應用。遺傳算法Neuroevolution of Augmenting Topologies (NEAT)的一個改編版本優化了BTNs,使其行為與飛行員行為的演示相似。與大多數ML方法一樣,NEAT需要許多連續的行為模擬來產生滿意的解決方案。NGTS不是為ML目的而設計的,因此圍繞NGTS開發了一個系統,該系統自動處理模擬和數據管理并控制優化過程。
進行了一組實驗,其中開發的ML系統對BTN進行了優化,以模仿三個簡單空戰場景中的例子行為。實驗表明,NEAT的改編版本(BTN-NEAT)產生的BTN能成功地模仿簡單的示范行為。然而,優化過程需要相當長的時間,計算時間長達44小時或模擬飛行時間為92天。緩慢的優化主要是受NGTS不能快速運行同時保持可靠的影響。這個可靠性問題是由NGTS缺乏時間管理造成的,它可以將代理人的狀態與模擬時間戳聯系起來。為了在更復雜的場景和演示中實現成功的行為優化,人們應該在高可靠性的前提下以比實時快得多的速度模擬行為。因此,我們認為NGTS并不適合于未來的ML工作。相反,需要一個為ML目的設計的輕量級空戰模擬,能夠快速可靠地運行。
戰斗機飛行員通過嚴格的訓練學習并保持他們的戰術技能。相當多的訓練是以模擬為基礎的,在訓練中,受訓者面對友軍和敵軍,他們的行為最好能加速訓練并建立起理想的能力。計算機生成的部隊(CGFs),是自主的、計算機控制的實體,被用來扮演這些友軍和敵軍的角色。理想情況下,在基于模擬的訓練中使用CGF應該提供一些好處,如增加飛行員的訓練可用性,減少訓練中對主題專家(SME)的需求。然而,手動模擬CGF的行為,使其對教學作用有足夠的代表性,這是很繁瑣的,而且已被證明具有挑戰性。因此,目前手工制作的行為模型往往是可預測的,不能適應新的情況或在軍事理論、戰術、技術和程序(TTP)方面表現得很真實。在基于模擬的空戰訓練中保持真實的體驗對于確保受訓者獲得必要的技能至關重要。然而,由于CGF的表現和行為被認為是不足的,中小企業往往在訓練中對CGF進行微觀管理,這是不幸的,因為中小企業的成本很高,他們的時間很寶貴,而且數量有限。
人工智能研究的最新進展已經開發出能夠產生智能代理的方法,在復雜的游戲中擊敗人類專家玩家,如圍棋[1]和星際爭霸II[2]。隨著這些進展,學習用于空戰的指導性和適應性代理行為已成為一個越來越受關注的研究領域。然而,為了發揮作用,飛行員模擬的對手和盟友的行為必須是真實的,并符合軍事理論,而不是,例如,試圖不惜一切代價贏得交戰。該研究領域的一些貢獻集中在強化學習方法上,并且已經顯示出一些有希望的結果。然而,即使仔細設計目標函數,強化學習代理也有可能學習到用于飛行員訓練的次優政策,這意味著他們的行為與根據既定理論和TTP所期望的不同。另一種方法是向ML算法提供專家示范,從中提取飛行員的具體知識,并將其納入代理人使用的行為模型。據我們所知,在空戰領域,很少或沒有先前的研究探討過這種方法。
本報告介紹了基于達爾文自然選擇原則的模仿學習算法被用來產生以行為轉換網絡(BTNs)表示的空戰行為模型。雖然BTNs已經出現在之前使用強化學習的空戰行為建模的相關工作中,但這項工作研究了BTNs是否適合模仿學習。下一代威脅系統(NGTS)被用來模擬BTNs,并進行了評估以考慮該模擬系統對機器學習(ML)的適用性。已經開發了一個ML系統,包括使用NGTS和選定的學習算法成功生產空中戰斗機代理所需的工具和方法。這個ML系統自動處理模擬和數據管理并控制學習算法。簡單的空戰場景被定義,并在使用該ML系統進行的一系列實驗中使用,在這些實驗中產生了反映示范飛行員行為的BTN。
為了限制這項工作的范圍,我們做了一些限定。開發的ML系統不是生產級的,而是一個概念驗證。因此,實驗中使用的場景和試點演示保持簡單。具體來說,這些都是一對一的場景,演示僅限于二維空間的運動。此外,行為演示是基于報告作者手工制作的BTN,而不是由專業飛行員制作的。
本報告是為從事軍事訓練和人工智能相關課題的研究人員準備的,最好具有空戰和行為建模的知識,其組織結構如下。第2章介紹了工作的背景,包括與空戰訓練和模擬有關的概念、人工智能理論和相關工作。第3章涵蓋了實驗中使用的選定的學習算法及其配置,而第4章介紹了構成ML系統的過程和工具。第5章和第6章通過定義空戰場景和行為演示來回顧實驗的設置和執行,并介紹了結果。第7章討論了這些結果,以及ML系統和NGTS的性能。第8章本報告的總結和對未來工作的思考。
圖5.2 第一個場景的總結: 逃亡。CGF從它們的初始位置向對方飛去。一旦藍色飛機進入紅色飛機的導彈射擊范圍內,紅色飛機就會轉身向相反方向逃離。
創造能夠適應人類的人工智能隊友的一個必要步驟是,開發能夠向人工智能系統表達人類目標和意圖的計算建模方法。用各種各樣的方法來實現這個目標是可能的,從基于過去數據的純粹預測模型到僅基于理論的生成模型。一種有希望的方法是所謂的從示范中學習的方法(Argall等人,2009;Ravichandar等人,2020),這種研究主旨是利用示范數據,如專家執行任務的行為,并訓練模型(通常被稱為 "智能體")來執行專家的任務。在本報告中,我們采用了從示范中學習的方法來模擬和預測模擬機器人在避撞的團隊任務中的行為。具體來說,我們采用了逆向強化學習(IRL)(Ng和Russell,2000年;Arora和Doshi,2021年),這是一種從演示中推斷獎勵函數的方法。
這項任務是基于一個研究性的視頻游戲,被用來研究人類自主性的團隊合作(Adamson等人,2017年),涉及一個由人類玩家和一個AI智能體共同控制的機器人。在沒有玩家輸入的情況下,AI智能體控制機器人,但玩家可以在任何時候推翻智能體,類似于現實世界中與自動駕駛助手一起駕駛的情況。這項任務對旨在模擬人類意圖的示范學習方法提出了挑戰,因為觀察到的任務行為來自兩個示范者的控制:一個是人類,一個是自動駕駛。例如,人類的行為可能是由對自己的目標的理解和對人工智能的目標的估計產生的。此外,當人工智能處于控制狀態時,所有關于人類的信息都是他們不提供輸入的,人類同意人工智能選擇的程度是隱藏的。
我們對這一特定任務的關注是由我們的團隊正在進行的工作所激發的,即利用激發這一任務的研究視頻游戲從參與者那里收集數據。最終,我們將嘗試模擬真實的人在長時間內的行為--每天玩180天--以促進適應性AI智能體的發展。這里描述的工作是對一種方法的驗證,這種方法將推動我們的團隊實現這一目標;然而,這種方法具有足夠的通用性,其核心概念可以應用于其他地方。
先進智能技術將不斷改變戰場性質和士兵需要執行的任務本質。因此,已經有許多關于人工智能(AI)在戰場上的作用討論,特別是集中在AI最有利的任務方面,士兵-AI編隊必須提供有效執行任務的能力,以及在這個任務演變過程中人和機器的必要適應。在這里,系統必須解決試圖利用復雜環境適應性強的智能敵手。在這種情況下,理解信任和信任測量的概念是至關重要的。然而,理解信任的動態性質以及如何準確測量和評估它是復雜的。
隨著越來越多地強調在未來的作戰行動中整合人類和自主系統,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)建立了人類自主團隊基本研究計劃(HAT ERP)。HAT ERP的目標是解決在復雜的戰術環境中人類和自主系統的合作所面臨的挑戰,以創建有效運作的協同團隊,并適應戰斗的動態性質。在HAT ERP的項目5中,正在解決的一個具體領域是如何有效地衡量關鍵的團隊過程,如信任和凝聚力。因此,HAT項目5的總體目標是開發新的、多模態的團隊信任和凝聚力指標,以有效地校準信任并提高支持下一代戰斗車輛(NGCV)的人類自主團隊的性能。HAT項目5更具體的目標包括:1)確定非侵入性的、實時/近實時的信任度量,以捕捉團隊信任的動態性質;以及2)為適當的信任干預提供信息,以便對個人和團隊信任進行適當校準。
盡管已知測量和評估信任在團結互助互動中的重要性,但仍有一些評估的復雜性和考慮。第一個問題集中在信任測量上。信任是一個復雜的結構,傳統上有點難以定義,因此也難以測量。例如,仍然需要努力了解信任測量的類型和應該利用的適當指標,因為并非所有的信任測量都是平等的。雖然有一些現有的信任測量方法,但它們大多使用自我報告的問卷;這些問卷提供了有價值的信息,但只是在離散的時間點上。我們需要與信任的動態性質相一致的測量方法,并允許在特定時間段內進行更連續的測量;從而提供有關信任變化以及它如何影響團隊互動和績效的更有力信息。此外,正如項目5(Krausman等人,2022年)下進行的研究所證明的那樣,對人類自主性團隊信任的評估必須考慮團隊發展和/或團隊工作的前、中、后階段,必須包括超越績效的多模式指標(Schaefer等人,2019年;Brewer等人,2022年)。見圖 1。
圖1 包括壓力、信任和凝聚力在內的事前事后主觀狀態的多模態數據表示,數據流來自通信指標和生理數據
鑒于這一要求,并基于文獻、實驗室和實地研究,Krausman等人(2022年)開發了一個概念性的工具包,由新的信任措施組成,包括以下內容: 1)主觀(即人際信任、技術信任);2)通信(即通信流、網絡動態、語義內容分析);3)生理(即心率、心率變異性和呼吸率);4)行為(眼球追蹤、界面互動等);以及5)情感(即面部表情追蹤)。認識到對信任評估平臺的需求,一個多模態的信任測量軟件工具箱逐漸形成--人類-自主性團隊信任工具箱(HAT3)。
第二部分將概述HAT3軟件的開發和其中包含的旨在測量信任的具體技術。此外,所討論的每個模塊將在隨后的章節中進一步詳細說明,并將包括信任測量類型的概要,以及有利于HAT ERP和NGCV項目的具體指標。
在決策或推理網絡中進行適當的推理,需要指揮官(融合中心)對每個下屬的輸入賦予相對權重。最近的工作解決了在復雜網絡中估計智能體行為的問題,其中社會網絡是一個突出的例子。這些工作在各種指揮和控制領域具有相當大的實際意義。然而,這些工作可能受限于理想化假設:指揮官(融合中心)擁有所有下屬歷史全部信息,并且可以假設這些歷史信息之間具有條件統計獨立性。在擬議的項目中,我們打算探索更普遍的情況:依賴性傳感器、(可能的)依賴性的未知結構、缺失的數據和下屬身份被掩蓋/摻雜/完全缺失。對于這樣的動態融合推理問題,我們建議在一些方向上擴展成果:探索數據源之間的依賴性(物理接近或 "群體思維"),在推理任務和量化不一定匹配的情況下,采用有用的通信策略,甚至在每個測量源的身份未知的情況下,采用無標簽的方式--這是數據關聯問題的一種形式。
我們還認識到,對動態情況的推斷是關鍵目標所在。考慮到一個涉及測量和物理 "目標 "的傳統框架,這是一個熟悉的跟蹤問題。但是,來自目標跟蹤和多傳感器數據關聯的技術能否應用于提取非物理狀態(物理狀態如雷達觀察到的飛機)?一個例子可能是恐怖主義威脅或作戰計劃--這些都是通過情報報告和遙測等測量手段從多個來源觀察到的,甚至可能被認為包含了新聞或金融交易等民用來源。這些都不是標準數據,這里所關注的動態系統也不是通常的運動學系統。盡管如此,我們注意到與傳統的目標追蹤有很多共同點(因此也有機會應用成熟的和新興的工具):可能有多個 "目標",有雜波,有可以通過統計學建模的行為。對于這種動態系統的融合推理,我們的目標是提取不尋常的動態模式,這些模式正在演變,值得密切關注。我們特別建議通過將雜波建模為類似活動的豐富集合,并將現代多傳感器數據關聯技術應用于這項任務,來提取特征(身份)信息。
研究的重點是在具有融合觀測的動態系統中進行可靠推理。
1.決策人身份不明。在作戰情況下,融合中心(指揮官)很可能從下屬那里收到無序的傳感器報告:他們的身份可能是混合的,甚至完全沒有。這種情況在 "大數據 "應用中可能是一個問題,在這種情況下,數據血統可能會丟失或由于存儲的原因被丟棄。前一種情況對任務1提出了一個有趣的轉折:身份信息有很強的先驗性,但必須推斷出身份錯誤的位置;建議使用EM算法。然而,這可能會使所有的身份信息都丟。在這種情況下,提出了類型的方法來完成對局部(無標簽)信念水平和正在進行的最佳決策的聯合推斷。
2.動態系統融合推理的操作點。在以前的支持下,我們已經探索了動態事件的提取:我們已經開發了一個合理的隱馬爾科夫模型,學會了提取(身份)特征,有一個多伯努利過濾器啟發的提取方法 - 甚至提供了一些理論分析。作為擬議工作的一部分,將以兩種方式進行擴展。首先,打算將測量結果作為一個融合的數據流,這些數據來自必須被估計的未知可信度的來源。第二,每個這樣的信息源必須被假定為雜亂無章的 "環境 "事件(如一個家庭去度假的財務和旅行足跡),這些事件雖然是良性的,可能也不復雜,但卻是動態的,在某種意義上與所尋求的威脅類似。這些必須被建模(從數據中)和抑制(由多目標追蹤器)。
3.數據融合中的身份不確定性。當數據要從多個來源融合時,當這些數據指的是多個真相對象時,一個關鍵的問題是要確定一個傳感器的哪些數據與另一個傳感器的哪些數據相匹配:"數據關聯 "問題。實際上,這種融合的手段--甚至關聯過程的好方法--都是相當知名的。缺少的是對所做關聯的質量的理解。我們試圖提供這一點,并且我們打算探索傳感器偏差和定位的影響。
4.具有極端通信約束的傳感器網絡。考慮由位置未知、位置受漂移和擴散影響的傳感器網絡進行推理--一個泊松場。此外,假設在這樣的網絡中,傳感器雖然知道自己的身份和其他相關的數據,但為了保護帶寬,選擇不向融合中心傳輸這些數據。可以做什么?又會失去什么?我們研究這些問題,以及評估身份與觀察的作用(在信息論意義上)。也就是說,假設對兩個帶寬相等的網絡進行比較;一個有n個傳感器,只傳輸觀察;另一個有n/2個傳感器,同時傳輸數據和身份。哪一個更合適,什么時候更合適?
5.追蹤COVID-19的流行病狀況。誠然,流行病學并不在擬議研究的直接范圍內,但考慮到所代表的技能以及在目前的健康緊急情況下對這些技能的迫切需要,投機取巧似乎是合理的。通過美國和意大利研究人員組成的聯合小組,我們已經證明,我們可以從當局提供的每日--可能是不確定的--公開信息中可靠地估計和預測感染的演變,例如,每日感染者和康復者的數量。當應用于意大利倫巴第地區和美國的真實數據時,所提出的方法能夠估計感染和恢復參數,并能很準確地跟蹤和預測流行病學曲線。我們目前正在將我們的方法擴展到數據分割、變化檢測(如感染人數的增加/減少)和區域聚類。
人工智能(AI)應用于武器系統是過去10年研究的一個主要趨勢。這些舉措旨在提高武器的準確性,執行非主動的瞄準手段,幫助導航和制導與控制(例如,在全球定位系統被拒絕的情況下),并減少與傳統的基于物理學的方法相比的整體計算資源,以便在更小、更實惠的武器系統上實現智能瞄準。這項研究還包括將作戰人員的戰斗空間擴展到無人駕駛飛行器,并使用蜂群方法與有人和無人平臺進行合作。
我們首先概述了人工智能的描述和歷史,并概述了人工智能在武器系統中的原理、技術和應用。這包括對監督自主系統;制導、導航和控制;行為和路徑規劃;傳感器和信息融合;智能戰略和規劃;兵棋推演建模;以及認知電子戰的研究和計劃的回顧。
然后,對將人工智能應用于武器系統的系統和項目進行了調查。雖然重點是基于美國的系統和項目,但也包括一個關于俄羅斯和中國相關系統的小節。最后,我們對將人工智能用于武器系統的倫理考慮進行了簡要評論。
機器學習(ML)和人工智能研究的最新進展揭示了人工智能在實現創新、增加機器的效用以及增強人類能力和經驗方面的力量和潛力。人工智能技術的顛覆性和其影響的深度還沒有被廣大公眾完全掌握。考慮到新時代的新興技術威脅,展示關鍵和相關的人工智能研究和最先進的技術是很重要的,這些技術不僅為武器系統提供了比傳統武器系統更多的自主權,而且大大增加了它們的殺傷力和戰斗生存能力。最終,人工智能在開發改變游戲規則的技術方面帶來了巨大的戰略機遇,這將確保國家安全、繁榮和技術領先地位。
美國軍方在創造先進的常規武器技術方面取得了巨大的進步,這些技術支持了士兵在戰場上的任務并增強了他們的能力。這些常規武器技術大多是自動化系統,在計劃、執行和完成一項任務或使命時依靠一套預先編程的規則。然而,在中國和俄羅斯等國家新開發的武器的前沿陣地上,人工智能支持的戰爭和高超音速武器給美國武裝部隊帶來了新一代的質量挑戰。下一代戰斗的步伐要求為戰略決策進行時間緊迫和大量的戰斗信息處理,這使得美國的許多常規武器系統只能執行低風險的任務,并在核領域之外處于威懾力減弱的態勢。
必須承認,人是昂貴的訓練資產。在戰場上增加更多的人員并不是推進最先進的戰爭的優雅或廉價的解決方案。相反,用支持人工智能的智能硬件來增強人在回路中的系統,可以在戰區提供更多的眼睛和耳朵,并通過使人工智能系統執行一些簡單和常規的任務來釋放人類的決策。
此外,無人駕駛作戰飛機系統(UCAS)是一種成熟的具有成本效益的系統解決方案,用于執行情報、監視和偵察(ISR)任務和遠程空襲。然而,自動化能力仍然受到人類在環形操作、評估和接觸的限制。雖然在任何可預見的未來都沒有打算消除武器化人工智能系統中的人類元素,但人類的能力仍然構成這些系統協同潛力的上限。但是,一個由人工智能驅動的智能武器系統的新生態系統將迎來新的戰爭形式和戰略。
人工智能國家安全委員會在其2021年的報告中提出,美國國防部(DoD)的軍事企業在整合人工智能技術方面落后于商業部門,并敦促在2025年前為整個國防部廣泛整合人工智能奠定基礎[1]。
幾個世紀以來,哲學家們一直在考慮以某種形式人工復制人類智能的某個方面的概念。1869年,威廉-杰農創造了第一臺基于布爾邏輯實現邏輯計算的機器。該機器能夠比人類更快地計算布爾代數和維恩圖。隨著這種邏輯計算機器的發展,人們很自然地質疑機器是否可以通過邏輯推理來為人類解決問題并做出決定。圖1-1中的時間軸顯示了人工智能的歷史和演變,并在本節中進行了詳細說明[2]。
在理論計算機科學的一些最早的工作中,英國數學家阿蘭-圖靈(Alan Turing)思考了機器是否能像人類一樣智能地行為和解決問題的問題。他在他的圖靈測試中提出,如果一臺機器能模糊地模仿人類這樣的智能生物,那么這臺機器就是智能的。這一理論測試成為一種指導性的形式主義,在這種形式主義中,當前的機器被測試其模仿人類智能概念的能力或潛力。作為測試的見證,Loebner獎是一個圖靈測試競賽,其任務是根據圖靈提出的基本問題來評估機器智能研究的現狀。
1928年,約翰-馮-諾伊曼證明了Minimax算法的基本定理,該算法旨在提供一種在零和博弈過程中使最大可能損失最小的策略。
圖1-1. AI歷史年表
在第二次世界大戰的高峰期,阿蘭-圖靈和他的團隊開發了一種機器算法,可以破譯德國的英格瑪信息密碼。他的算法的成功,推動了將復雜任務委托給機器的進一步努力,是機器計算的基礎,也是ML發展的先導。
1943年,McCulloch和Pitts開創了神經網絡(NN)的最早概念--McCulloch-Pitts的形式網絡理論--這在1949年馮-紐曼在伊利諾伊大學的四次演講中得到了體現[3]。
大約在同一時間,約翰-麥卡錫,一位計算機科學家,在1955年創造了 "人工智能 "來指代機器智能;計算機科學家艾倫-紐維爾;以及赫伯特-A-西蒙,一位經濟學家和政治學家,開創了第一個旨在自動推理的真正程序(稱為邏輯理論家)。隨著這一突破性的努力,對智能機器的探索開始了,為人工智能作為計算機科學的一個新的學術研究領域鋪平了道路。
1957年,一位名叫弗蘭克-羅森布拉特博士的心理學家開發了一個名為 "感知器 "的簡化數學模型,描述了我們大腦中的神經元如何運作。這一成就被強調為 "Perceptron收斂定理"。
同年,理查德-貝爾曼開發了動態編程,用于解決一類最佳控制問題。他還介紹了離散隨機最優控制問題的馬爾科夫決策過程表述,這為現在所稱的 "強化學習 "奠定了重要基礎。
在這些發展之后,另一位名叫阿瑟-塞繆爾的人工智能先驅利用他早先在ML方面的開創性工作,成功地開發了第一個檢查者算法。他實現了現在被稱為 "Alpha-Beta修剪 "的早期版本,這是一種搜索樹方法,通過Minimax算法減少評估節點的數量。1959年,一位名叫威廉-貝爾森(William Belson)的統計學家開發了一種名為決策樹的非參數、監督學習方法的早期版本。
在20世紀60年代,人工智能研究的重點是解決數學和優化問題。1960年,羅納德-霍華德提出了馬爾科夫決策過程的策略迭代方法,建立了一些與強化學習有關的最早的工作。
到1968年,著名的路徑搜索算法A-star是由計算機科學家尼爾斯-尼爾森提出的。60年代末,機器人建模、控制和機器視覺方面取得了進展,導致在1972年開發了第一個名為WABOT-1的 "智能 "擬人機器人,并整合了肢體操縱、視覺和語音系統。
Harry Klopf的 "適應性系統的異質理論 "的復興對適應性系統的試錯范式的發展有很大影響。1977年,Ian Witten提出了最早的強化學習系統之一,使用了時間差法。理查德-薩頓和安德魯-巴托設計了一種強化學習算法,稱為演員批評法。
由于70年代中期到80年代末計算機的計算能力限制,人工智能研究在有大量數據處理要求的應用中發現了困難,如視覺學習或優化問題。同時,數學研究 "證明 "了(單層)感知器不能學習某些模式。此外,1973年發表的一份Lighthill報告對人工智能的潛力非常悲觀,這導致人工智能研究的資金被削減。結果,資金短缺導致人工智能的研究經歷了一個被稱為 "人工智能冬天 "的時期。
到了80年代中后期,繼1986年多層感知器的發展之后,在NNs方面也做出了重要的理論貢獻。這些貢獻是David Rumelhart在1986年開發的遞歸神經網絡(RNNs),John Denker等人在1987年開發的貝葉斯網絡,以及Yann LeCun在1989年開發的卷積神經網絡(CNNs)。
此外,Chris Watkins在1989年開發了另一種重要的強化學習方法,稱為 "Q-Learning"。1992年,在IBM的Thomas J. Watson研究中心,Gerald Tesauro通過自我強化學習為雙陸棋游戲訓練了TD Gammon程序。1997年,IBM的 "深藍 "計算機使用粗暴的、基于搜索的算法擊敗了國際象棋世界冠軍加里-卡斯帕羅夫,使其成為第一個在國際象棋中戰勝頂級職業選手的程序。
在90年代末和21世紀初,在ML中看到的大部分進展是由計算機處理、存儲和分布式計算方面的指數級進展所推動的。2007年,需要大量計算資源的保證最優玩法在跳棋中得到了解決。在過去的20年里,圖形處理單元用于通用計算的激增導致了今天人工智能應用的進一步進展,特別是在2012年和2014年,不同的NN拓撲結構,如殘差網絡和生成式對抗網絡的發展。
2015年,ImageNet競賽,一個為約400萬張圖像的ImageNet圖像集開發分類器的公開競賽,有一個冠軍,其錯誤率被認為低于一個人。2016年,DeepMind的AlphaGo程序在擊敗當時被認為是最優秀的圍棋選手李世石后,成為最佳AlphaGo選手。繼AlphaGo的學習能力之后,AlphaZero在2017年擴展了AlphaGo,成為國際象棋和Shogi的最佳棋手。
2019年,美國國防部高級研究計劃局(DARPA)推出了AlphaDogfight,這是基于人工智能的空戰算法在模擬的F-16狗斗中與經過頂級訓練的飛行員進行的一系列三輪競賽。第一輪和第二輪比賽中,人工智能程序相互競爭。第三輪將人工智能勝利者的飛行員提煉出來,與美國空軍武器學校的優秀畢業生進行競爭。蒼鷺系統的人工智能飛行員不僅在競爭激烈的人工智能空中戰斗人員中獲勝,而且在與訓練有素的人類F-16飛行員的較量中取得了令人難以置信的五次勝利。
OpenAI在2020年5月推出了一個名為GP3的 "自然語言處理 "模型,它生成的寫作內容與人類無異。其最新版本可以從簡單的描述性語言生成編程語言代碼[4]。人工智能的歷史繼續向前發展,特別是對國防部的武器系統應用。本報告的其余部分將調查與武器系統有關的當代人工智能技術和系統。
根據Barr和Feigenbaum的說法,人工智能被定義為 "計算機科學中與設計智能計算機系統有關的部分,即表現出我們與人類行為中的智能有關的特征的系統--理解語言、學習、推理、解決問題等等"[5]。
Stuart Russel和Peter Norvig在他們的《人工智能:一種現代方法》一書中對人工智能的最新定義是:"設計和建造能夠從環境中接收感知并采取影響環境的行動的智能體" [6]。
Pei Wang優雅地將智能定義為 "在知識和資源不足的情況下的適應"[7]。雖然該定義沒有說明適應的目的(如目標),但它揭示了為達到這種智能需要完成的工作。
如果要以人類為中心定義人工智能,即執行人類智能水平的任務,那么人工智能需要感知、推理、知識構建、推理、決策和計劃、學習、交流,以及有效移動和操縱環境的能力。
人工智能的科學目標是回答哪些關于知識表示、學習、規則系統、搜索等的想法可以解釋各種類型和水平的真實智能。工程目標是為不同的應用領域開發人工智能技術,以解決現實世界的問題。
在人工智能的科學基礎上,我們發現來自不同科學領域的可識別概念--哲學、邏輯/數學、計算、心理學和認知科學、生物學和神經科學以及進化。在尋求發現和更好地理解人工智能是什么或將是什么的過程中,來自這些不同知識領域的貢獻已經被證明是不可避免和不可或缺的了。許多研究人工智能的領域都在同時構建人類認知如何運作的模型,并在它們之間采用有用的概念。例如,NN,一個源于生物學的概念,試圖在簡化的人工神經元的基礎上建立人工系統,這個概念導致了一個簡單的抽象知識結構的表示,足以解決大型計算問題集。
人工智能大致分為三個主要層級--人工狹義智能(ANI)、人工通用智能(AGI)和人工超級智能(ASI)。圖1-2說明了這三個層級中的各種分組,本節將更多地討論這些分組。
ANI是對一個執行狹窄或單一任務的人工智能系統的描述。它可以包括各種方法來獲得結果,如傳統的ML(以圖像分類為例)或目標檢測(包括ML和基于規則的系統)。給定一組規則或約束,它的目標是提供一組代表狹義任務的輸出。ANI不會擴展或學習新的認知,也不會自我學習新的操作模式。數據挖掘、大多數專家系統和針對某一應用的預測功能(例如,垃圾郵件檢測和面部識別)都被認為是ANI的形式。ANI還包括 "有限記憶人工智能"--用于自動駕駛汽車的系統類型,使用過去的經驗(訓練),并學習做決定,隨著時間的推移而改進。
AGI是一種更強大的智能形式,因為它被更多類似人類智能的特征所增強,例如自主學習的能力和解釋情緒和語音語調的能力。這使得與AGI相關的智能與人類的智能水平相當。AGI的一些關鍵核心能力如下:
ASI是一種超越最聰明的人類頭腦的智能模型。實現ASI的方法仍在概念化中,但將是那些超越AGI并需要某種自我意識的系統。這些系統最好能代表所有人類的認知能力,甚至更多。
ML是機器從數據中學習的能力,目的是做出準確的預測。它大致分為四類學習,提供了豐富的專用和通用的技術家族。
在這種形式的學習中,訓練數據使用包含的輸入和標記的或預定的輸出數據。如果有缺失的輸入或輸出條目,它們會被預處理,以便將一個輸入正確地映射到其真正的對應輸出。通過從正確生成的訓練數據集中學習,系統學會了將不在原始數據集中的輸入與預測的輸出(標簽或值)聯系起來。這種類型的訓練解決的典型問題是回歸和分類[8]。
這種形式的學習中,系統直接從未標記的數據中發現有趣的或隱藏的結構[9]。無監督學習被用于聚類分析、降維或估計可能產生輸入數據的密度[8]。
當數據集包含有標記的和無標記的數據時,這種學習形式的系統利用無標記的數據來更好地捕捉潛在的數據分布,并獲得一個更好的預測,如果它只從標記的數據中訓練的話。這種學習形式適用于訓練數據集中的標注數據遠遠少于未標注數據的情況[8]。
在這種學習模式中,系統使用獎勵/懲罰機制進行訓練,這樣它所選擇和執行的行動,當行動可取時,會使系統得到獎勵,當行動不可取時,會受到懲罰。強化學習問題涉及學習如何做(如何將情況映射到行動上)以最大化數字獎勵信號[9]。
人工智能有可能應用于武器系統生態系統的許多方面。它被用來控制系統,從而實現自主性和提高性能,以在具有挑戰性的環境中選擇指導、導航和控制方面的問題。同樣,人工智能可用于解決任務和路徑規劃中的挑戰性問題,從而實現更高水平的復雜任務目標和操作要求。人工智能也被用于電子戰領域的支持、反制,甚至是反制措施。它還可能被用于來自不同系統層次和領域的信息融合,以泄露抽象的高價值戰場情報,并提供關鍵線索和快節奏的決策,從而在現代戰爭中創造寶貴的戰術優勢。
報告的這一部分將強調最先進的人工智能方法在適用于自主和武器系統的各種人工智能問題領域的使用。它是根據以下問題領域來組織的。
自主性
感知中的人工智能
制導、導航和控制中的人工智能
任務和路徑規劃
智能戰略
對手建模
認知型電子戰
第一章 引言
1.1問題陳述
1.2常規武器系統
1.3 AI簡史
1.4什么是AI?
1.4.1 ANI
1.4.2 AGI
1.4.3 ASI
1.5 ML
1.5.1監督學習
1.5.2無監督學習
1.5.3半監督學習
1.5.4強化學習
第二章 最先進的方法
2.1學習人工智能范例
2.1.1深度學習
2.1.2強化學習
2.2隨機優化和搜索算法
2.2.1隨機優化
2.2.2圖形搜索算法
2.3新興人工智能范例
2.3.1神經符號AI
2.3.2 NE
第三章 人工智能在武器系統中的應用
3.1自主性
3.1.1定義、級別和框架
3.1.2自主系統的功能組件
3.2感知中的人工智能
3.2.1圖像分割
3.2.2目標檢測、分類和場景理解
3.2.3傳感器融合
3.3制導、導航和控制中的人工智能
3.3.1 GN&C系統
3.3.2常規控制理論方法
3.3.3智能控制
3.3.4本地化和導航
3.3.5系統識別
3.4任務和路徑規劃
3.4.1GAs
3.4.2群體智能
3.5智能策略
3.6對手建模和兵棋推演
3.7認知電子戰
3.7.1電子支持措施
3.7.2 ECMs
3 .7.3 ECCMs
第四章 將人工智能應用于武器系統的系統和程序
4.1天線系統
4.1.1下一代空中優勢計劃
4.1.2 Shield AI Hivemind
4.1.3 Shield AI V-Bat
4.1.4 Kratos XQ-58 Valkyrie
4.1.5 MQ-20 Avenger UCAS
4.1.6自主彈藥
4.1.7 Dynetics X-61小精靈
4.2 海軍系統
4.3 陸軍系統
4.3.1 QinetiQ/Pratt Miller的遠征自主模塊化飛行器
4.3.2Textron系統公司的Ripsaw M5
4.3.3 Rheinmetall公司的Lynx KF41
4.4 群系統
4.4.1 DARPA的攻擊性蜂群戰術
4.4.2自主協同小直徑炸彈群
4.4.3 Perdix群
4.4.4 Mako UTAP22
4.4.5 Coyote UAS Block 3
4.4.6機器人代理命令和傳感群的控制架構
4.4.7激流勇進微型無人潛水器
4.5戰斗管理和智能指揮與控制
4.6 ISR和目標系統
4.6.1 SRC的HPEC Pod
4.6.2復仇女神
4.7導航
第五章 未來作戰中的AI
第六章 人工智能和外來威脅
6.1俄羅斯
6.2中國
第七章 倫理考量
第八章 總結
參考文獻