認知雷達能持續感知環境、與環境互動并從中學習。這種范例可應用于多功能雷達(MFR),后者可執行多種功能,如監視、跟蹤和通信等。為了執行這些任務,雷達資源管理(RRM)模塊將可用資源分配給這些功能,同時考慮任務參數,包括優先級。本報告介紹的工作重點是時間窗口內的任務調度問題。對于時間資源而言,RRM 尤其具有挑戰性,因為 1) 任務要求可能極為不同,具有多個優先級類別;2) 調度策略應能適應動態環境。適應非穩態環境是認知雷達的一個關鍵優勢。
本報告中介紹的第一項工作旨在應對這兩項挑戰,首先是為任務參數的分布制定一個相當通用的模型,具體包括任務優先級和延遲容忍度;其次是在深度強化學習(DRL)框架內應用遷移學習(TL),以適應不同的環境。這種方法的基礎是在深度神經網絡(DNN)的輔助下使用蒙特卡洛樹搜索(MCTS)。我們表明,TL 可以將在初始參數分布(環境)上訓練所學到的策略轉移到新分布所需的策略上,從而加速訓練。我們表明,基于 TL 的方法可適應環境的快速或漸進變化。結果表明了所實現的魯棒性和計算增益。
基于遷移的工作面臨的一個重要挑戰是對環境知識的假設,而在實際場景中,環境知識很可能是未知的。認知雷達的任務調度算法應能適應各種環境,而無需了解環境的基本動態。這就促使我們考慮基于模型的 DRL,即學習環境動態模型,并通過所學模型進行規劃來執行任務調度。該方法將 MCTS 與學習的神經網絡模型相結合,后者包括一個表示網絡、一個動態網絡和一個預測網絡。這些網絡的參數通過梯度下降法更新,在訓練過程中使用自我播放機制生成的數據。結果表明,所提出的方法可以在不了解環境動態的情況下,從自我游戲數據中學會自行安排任務,同時提供接近最優的結果。
根據項目工作計劃,本進度報告概述了項目第二年開展的技術活動。更具體地說,它包括
回顧全偏振三維InISAR 算法及其通過偽代碼的實現。
3D InISAR 算法的性能分析。在這方面,提出并比較了兩種不同的方法,即基于相干的方法和基于跨度的方法。利用模擬數據和真實數據強調了這兩種方法的優缺點。事實上,模擬數據可以對三維重建精度進行數值量化,但也有一定的局限性,因為模擬數據無法忠實再現不同角度下的偏振目標散射機制。另一方面,真實數據是真實的(即使是在受控幾何條件下獲取的),但不能用于對重建精度進行數值量化。
兩種 ATR 算法的設計和初步實施(用于初步驗證),將在項目的第三年進行全面測試。
圖 2.1: 使用基于 Pol-InISAR 的擬議方法進行三維目標形成的總體框圖。
該項目正在按照工作計劃進行。提出并比較了利用全偏振數據估算目標高度的兩種方法。通過定義合適的指標,對已實施的方法進行了仔細深入的分析。結果表明,與單偏振算法相比,在形成三維 InISAR 圖像時使用偏振信息非常有效。這些算法在模擬數據和真實數據上都進行了測試。通過模擬數據,我們可以對所建議方法的準確性進行數值量化。真實數據證明了算法在真實數據上的有效性,并證明了基于 SPAN 的算法相對于基于相干性的算法的局限性。最后,我們提出并初步實施了兩種 ATR 算法,以驗證其可行性。其中一個屬于模板匹配方法的分支,第二個屬于機器學習的分支。這項工作將繼續進行,最終實施和完善分類算法及其性能評估。
本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。
雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。
本報告的目的是探討可用于估計紅外(IR)目標中心的多種方法。具體的重點是在一個非常小的空間區域發出信號的目標,近似于一個點源。如果只需要一個簡單的解決方案,中心可以被大致估計為感興趣區域(ROI)中最亮的像素。雖然很容易實現,但這種方法只能產生一個精確到單個像素的估計。如果沒有任何進一步的細化,這將建立一個精度的下限。然而,通過考慮鄰近的像素,有可能將估計值細化到一個像素的一小部分。因此,選定的算法必須能夠進行亞像素估計,以便為高精確度的應用建立必要的精確程度。這些應用中的幾個可能包括在整個視頻中跟蹤一個投射物或使用紅外目標進行相機校準。
將這些算法限制在點源上的重要性在于,它允許對目標中心進行非常精確的估計。理想的候選人將在圖像的一個小區域內擁有一個單一的、定義明確的峰值。一個物體作為點源的能力根據所涉及的距離而變化。一個較大的物體可能不被認為是一個點源,除非是在非常長的距離上,而一個短距離的點源可能在較長的距離上根本無法注冊。在這方面,有幾個物體可以被認為是適用的。鹵素燈泡從燈泡中心的一個小燈絲產生熱量。帶有示蹤劑的射彈會在子彈底部有一個小的,但很亮的燃燒點。鉚釘的頭部在外部邊緣迅速冷卻,但在中心緩慢冷卻,在死角處形成一個熱斑。所有這些元素都是這種算法的良好候選者。附近的車輛,可能看起來很大(幾百個像素),其紅外特征的梯度很淺,將不適合這種跟蹤算法。
首先,有必要建立一個全像素方法,它將作為一個控制和基準。這種算法的作用是找到強度最大的像素位置。在出現平局的情況下,解決方案將是峰值位置的平均值。因此,如果像素值是飽和的,全像素估計有可能產生一個小數值。請注意,由于圖像生成的性質,最大值,因此整個像素的估計值將出現在子圖像的中心(或在飽和圖像的情況下接近中心)。這意味著,只要圖像被裁剪并以ROI為中心,其余算法的結果對任何尺寸的圖像都有效。
由相機記錄的真正的點源可以在數學上表示為一個艾瑞盤。由于這個函數相當復雜,可以用眾所周知的高斯分布做一個稍不準確的估計。這是一個非常常見的簡化,雖然這兩個函數的尾部不匹配,但中心,即估計的最重要的位置,卻非常匹配(參考文獻1)。候選點源,給定適當的距離,預計將表現出類似于艾瑞盤或高斯分布的特征。因此,尋找子像素中心的最合理的方法是將一個二維(2D)高斯函數擬合到圖像區域,獲得其中心的坐標。在實踐中,使用MATLAB擬合二維高斯分布需要運行一個優化,這可能是相當緩慢的。因此,盡管這種方法可以非常精確,但最好還是能有一個能更快運行的解決方案。將二維高斯分布擬合到圖像區域的方法被稱為優化高斯擬合。
為了獲得一個計算成本較低的解決方案,需要尋求一種確定性的分析方法。首先,參考文獻2中描述了一種擬合拋物線估計器的新方法。雖然這同時滿足了確定性和分析性的要求,但它只針對一維(1D)的情況。為了對估計點源的子像素中心有用,它必須在二維上推導。這個估算器可以根據方程1到9擴展到二維空間。
生理和行為過程在多個時間尺度上展開。傳統的時間序列分析工具被設計用來捕捉靜止的、單一尺度的過程,這可能會錯過重要的信息。近幾十年來,人們提出了一些方法來捕捉時間序列的多尺度特性,如去勢波動分析。本報告研究了生理和行為的多尺度測量適合Fitbit Charge 4移動傳感器的被動感應數據的方式。使用傳統的時間序列分析和新開發的多尺度方法:多尺度回歸分析,分析了來自辦公室工作人員的大型長期研究的身體活動和心率(HR)數據。這些分析是在日和月的水平上進行的。結果表明,與單尺度分析相比,多尺度分析使模型的R2大幅提高,用于HR和步數的自相關分析(增加13%至108%)和HR與步數的交叉相關或一致性分析(增加21%至88%)。與心率相比,考慮體力活動時,多尺度分析導致更好的擬合統計數據是最有利的。總體結果表明,通過估計多尺度而不是單尺度的過程,可以更好地反映日常生活中的生理和行為。
人類行為和生理學在多個時間尺度上運行,有多個相互作用的組成部分,包括精神和生理過程。分析時間序列數據的傳統方法假定數據在單一時間尺度上運行;也就是說,數據產生的過程存在于單一時間尺度上,所以當以特定的速度測量時,感興趣的模式是可以觀察到的。因此,這些傳統的方法往往會錯過現實世界人類數據的關鍵屬性,可能會掩蓋重要的影響,導致更差的模型擬合和糟糕的預測性能。例如,心率(HR)數據經常使用多尺度方法進行研究(Peng等人,1995),許多研究結果表明,心臟搏動間期最好用多尺度而不是單尺度測量來描述(Peng等人,1995;Perki?m?ki等人,2000;胡等人,2010)。
近年來,已經開發了一些表征時間序列數據多尺度特性的方法,包括捕捉多個時間序列之間關聯的方法。這些方法已經被應用于心理學、經濟學、地球物理學和城市規劃等領域(Yuan等人,2015),但是它們還沒有被應用于對人們日常生活的大型長期研究。隨著技術的進步,復雜的數據收集系統越來越容易獲得,這種范圍的數據集也越來越普遍,考慮到這種數據所反映的多尺度過程可能很重要,將多尺度建模與長期和 "野外 "收集的數據相結合是一個重要步驟。
在這里,我們旨在確定在被動傳感人類數據的大型長期數據集上使用這些多尺度和多模態方法在模型擬合方面的收益。最終,這種方法可能會促進對士兵的健康、準備和心理狀態的低成本、準確評估,有可能改善指揮官的決策,并形成適應性技術的基礎,如人工智能,可以作為隊友而不是工具。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。
這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。
Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。
最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:
對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。
一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?
本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。
以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。
路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:
讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:
1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。
2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。
a. 物體(例如,障礙物)在位置或區域。
b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。
c. 地點可能代表更大的區域(例如,雷區的位置)。
d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。
a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。
b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。
4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。
6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。
路線偵查收集和解釋不同種類和不同來源的信息:
背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。
任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。
環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。
任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。
如前所述,一份報告。
原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。
不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。
用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。
代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。
新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。
背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。
本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。
該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。
在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。
第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。
這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。
該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:
為大規模系統的多目標跟蹤開發可擴展的解決方案。
開發基于信息論原理的多傳感器融合的分布式解決方案。
確定多傳感器多目標跟蹤系統可以交換多少信息。
該項目為多傳感器多目標跟蹤開發了基本的解決方案:
對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。
確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。
來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。
對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。
目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。
本報告總結了網絡科學實驗方法項目期間的研究成果,大約涵蓋2017-2020年。該項目重點關注兩個主要議題:彈性網絡的上下文感知網絡和網絡安全。上下文感知網絡旨在改善戰術網絡及其支持服務的性能,使用上下文感知來加強目前的實踐方法,這些方法不一定考慮環境的動態和資源有限的邊緣設備和網絡的限制。彈性網絡的網絡安全旨在加強戰術網絡在動態和復雜對手面前的安全性。
參與本項目的美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員在相關主題的多個外部合作伙伴計劃的形成和合作中具有重要影響。這些項目的成果被納入任務資助的項目。這些合作伙伴計劃包括美國-英國分布式分析和信息科學國際技術聯盟(DAIS ITA)、戰場物聯網合作研究聯盟(IoBT CRA)、技術合作計劃(TTCP)和北約科學和技術組織信息系統技術(NATO STO IST)小組。
這項研究的影響包括:網絡模擬實驗驗證了支持理論結果的算法和技術的可行性,在網絡和通信研究界對研究成果進行了大量報道,并對陸軍概念科技(S&T)文件做出了貢獻。下文中總結的重點包括:利用沙堆模型開發網絡控制中的級聯故障的最佳控制,并確定可以防止級聯故障的條件;將密匙壽命提高一個數量級的物理層安全認證協議;以及對指揮與控制(C2)、火災和網絡科技概念文件的貢獻。
圖 1 包含理解、適應和執行周期的上下文感知網絡示意圖
在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。
無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。
為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。
城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。
第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。
圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。