亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文回顧了機器學習中的隱私挑戰,并提供了相關研究文獻的關鍵概述。討論了可能的對抗性模型,討論了與敏感信息泄漏相關的廣泛攻擊,并突出了幾個開放的問題。

//ieeexplore.ieee.org/document/9433648

引言

像谷歌、微軟和亞馬遜這樣的供應商為客戶提供軟件接口,方便地將機器學習(ML)任務嵌入他們的應用程序。總的來說,機構可以使用ML-as-a-service (MLaaS)引擎來處理復雜的任務,例如訓練分類器、執行預測等。他們還可以讓其他人查詢根據他們的數據訓練的模型。當然,這種方法也可以用于其他環境,包括政府協作、公民科學項目和企業對企業的伙伴關系。不幸的是,如果惡意用戶恢復用于訓練這些模型的數據,由此產生的信息泄漏將產生嚴重的問題。同樣地,如果模型的參數是秘密的或被認為是專有的信息,那么對模型的訪問不應該讓對手知道這些參數。在這篇文章中,我們研究了這一領域的隱私挑戰,并對相關的研究文獻進行了系統的回顧。

我們討論的是可能的對抗性模型和設置,其中涵蓋了與私人和/或敏感信息泄漏相關的廣泛攻擊,并簡要調研了最近的結果,試圖防止此類攻擊。最后,我們提出了一個需要更多工作的開放式問題列表,包括需要更好的評估、有針對性的防御,以及研究與策略和數據保護工作的關系。

機器學習隱私

任何系統的安全性都是根據其設計用來防御的敵對目標和能力來衡量的;為此目的,現在討論了不同的威脅模型。然后,本文試圖在ML中提供隱私的定義,重點討論在“攻擊”一節中詳細討論的不同類型的攻擊。

總的來說,我們關注的是模型的隱私。(注意,對抗樣例和整體魯棒性問題超出了本文的范圍。)在本節中,將討論與提取有關模型或訓練數據的信息相關的對抗目標。

當模型本身代表知識產權時,例如在金融市場系統中,模型及其參數應保持私有。在其他情況下,必須保存訓練數據的隱私,例如在醫療應用中。無論目標是什么,攻擊和防御都與暴露或防止暴露模型和訓練數據有關。

攻擊者可能擁有的訪問類型可以是: ■ 白盒,其中對手有關于模型或其原始訓練數據的一些信息,如ML算法、模型參數或網絡結構;或者總結、部分或全部的培訓數據。 ■ 黑盒,對手對模型一無所知。相反,他/她可以通過提供一系列精心設計的輸入和觀察輸出來探索一個模型。

一個需要考慮的變量是攻擊可能發生的時候:

■ 訓練階段: 在這個階段,對手試圖學習模型,例如,訪問摘要、部分或全部訓練數據。他/她可能會創建一個替代模型(也稱為輔助模型)來對受害者的系統進行攻擊。

■ 推理階段: 在這個階段,對手通過觀察模型的推理來收集關于模型特征的證據。

最后,我們可以區分被動攻擊和主動攻擊:

■ 被動攻擊: 在這種類型的攻擊中,對手被動地觀察更新并執行推理,例如,不改變訓練過程中的任何東西。

■ 主動攻擊: 在這種類型的攻擊中,對手主動改變他/她的操作方式,例如,在聯邦學習的情況下,通過使用連接到最后一層的增強屬性分類器擴展他們的協作訓練模型的本地副本。

付費5元查看完整內容

相關內容

在現實世界中,越來越多的客戶在使用人工智能服務時將隱私視為一個問題,尤其是當客戶內容包含敏感數據時。最近的研究表明,像GPT-2這樣的大型語言模型可以記憶內容,這些內容可以被對手提取出來。當模型在客戶數據上接受訓練時,這在部署場景中帶來了很高的隱私風險。由于其數學上的嚴密性,差分隱私被廣泛認為是隱私保護的黃金標準。為了緩解機器學習中對隱私的擔憂,許多研究工作都在研究具有不同隱私保障的機器學習。現在是時候澄清不同隱私下學習的挑戰和機會了。在本教程中,我們首先描述了機器學習模型中潛在的隱私風險,并介紹了差分隱私的背景,然后介紹了在機器學習中保障差分隱私的流行方法。在接下來的教程中,我們強調學習和隱私之間的相互作用。在第二部分中,我們展示了如何利用學習屬性來提高隱私學習的效用,特別是利用數據點之間的相關性和深度學習模型的低秩屬性來解決這些挑戰的最新進展。在第三部分,我們提出了研究的另一個方向,即利用差分隱私的工具來解決經典的泛化問題,并給出了利用差分隱私的思想來抵抗機器學習攻擊的具體場景。

付費5元查看完整內容

生成對抗網絡(GAN)已經在計算機視覺、自然語言處理等領域推廣了各種應用,因為它的生成模型能夠從現有的樣本分布中合理地生成真實的例子。GAN不僅在基于數據生成的任務上提供了令人印象深刻的性能,而且由于其博弈優化策略,也為面向隱私和安全的研究提供了有利條件。遺憾的是,目前并沒有對GAN在隱私和安全方面進行全面的綜述,這也促使了本文對這些最新的研究成果進行系統的總結。現有的作品根據隱私和安全功能進行適當的分類,并對其優缺點進行綜合分析。鑒于GAN在隱私和安全方面仍處于非常初級的階段,并提出了有待解決的獨特挑戰,本文還闡述了GAN在隱私和安全方面的一些潛在應用,并闡述了未來的一些研究方向。

生成對抗網絡(Generative Adversarial Networks, GAN)帶來的技術突破迅速對機器學習及其相關領域產生了革命性的影響,這種影響已經蔓延到各個研究領域和應用領域。作為一種強大的生成框架,GAN顯著促進了許多復雜任務的應用,如圖像生成、超分辨率、文本數據操作等。最近,利用GAN為嚴重的隱私和安全問題制定優雅的解決方案,由于其博弈優化策略,在學術界和業界都變得越來越流行。本綜述的目的是提供一個關于GAN的全面的回顧和深入總結的最新技術,并討論了一些GAN在隱私和安全領域有前途的未來研究方向。我們以對GAN的簡要介紹開始我們的綜述。

付費5元查看完整內容

近年來,機器學習取得了顯著進展,提供了一些新功能,比如創建復雜的、可計算的文本和圖像表示。這些功能催生了新產品,如基于圖像內容的圖像搜索、多種語言之間的自動翻譯,甚至是真實圖像和聲音的合成。同時,機器學習已經在企業中被廣泛采用,用于經典的用例(例如,預測客戶流失、貸款違約和制造設備故障)。

在機器學習取得成功的地方,它是非常成功的。

在許多情況下,這種成功可以歸因于對大量訓練數據的監督學習(結合大量計算)。總的來說,有監督的學習系統擅長于一項任務:預測。當目標是預測一個結果,并且我們有很多這個結果的例子,以及與它相關的特征時,我們可能會轉向監督學習。

隨著機器學習的普及,它在業務流程中的影響范圍已經從狹窄的預測擴展到決策制定。機器學習系統的結果經常被用來設定信用限額,預測制造設備故障,以及管理我們的各種新聞推送。當個人和企業試圖從這些復雜和非線性系統提供的信息中學習時,更多(和更好)的可解釋性方法已經被開發出來,這是非常重要的。

然而,僅僅基于預測的推理有一些基本的限制。例如,如果銀行提高客戶的信用額度會發生什么?這些問題不能用建立在先前觀察到的數據上的相關模型來回答,因為它們涉及到客戶選擇的可能變化,作為對信用限額變化的反應。在很多情況下,我們的決策過程的結果是一種干預——一種改變世界的行動。正如我們將在本報告中展示的,純粹相關的預測系統不具備在這種干預下進行推理的能力,因此容易產生偏差。對于干預下的數據決策,我們需要因果關系。

即使對于純粹的預測系統(這是監督學習的強項),應用一些因果思維也會帶來好處。根據因果關系的定義,它們是不變的,這意味著它們在不同的情況和環境中都是正確的。對于機器學習系統來說,這是一個非常理想的特性,在機器學習系統中,我們經常根據我們在訓練中沒有看到的數據進行預測;我們需要這些系統具有適應性和健壯性。

因果推理和機器學習的交集是一個迅速擴展的研究領域。它已經產生了可供主流采用的功能——這些功能可以幫助我們構建更健壯、可靠和公平的機器學習系統。

本書介紹了因果推理,因為它涉及很多數據科學和機器學習工作。我們引入因果圖,著重于消除理解的概念障礙。然后我們利用這個理解來探索關于不變預測的最新想法,它給高維問題帶來了因果圖的一些好處。通過附帶的原型,我們展示了即使是經典的機器學習問題,如圖像分類,也可以從因果推理工具中受益。

付費5元查看完整內容

隨著數據越來越多地存儲在不同的筒倉中,社會越來越關注數據隱私問題,傳統的人工智能(AI)模型集中訓練正面臨效率和隱私方面的挑戰。最近,聯邦學習(FL)作為一種替代解決方案出現,并在這種新的現實中繼續蓬勃發展。現有的FL協議設計已經被證明對系統內外的對抗是脆弱的,危及數據隱私和系統的魯棒性。除了訓練強大的全局模型外,最重要的是設計具有隱私保障和抵抗不同類型對手的FL系統。在本文中,我們對這一問題進行了第一次全面的綜述。通過對FL概念的簡明介紹,和一個獨特的分類涵蓋:1) 威脅模型; 2) 中毒攻擊與魯棒性防御; 3) 對隱私的推理攻擊和防御,我們提供了這一重要主題的可訪問的回顧。我們強調了各種攻擊和防御所采用的直覺、關鍵技術和基本假設。最后,我們對魯棒性和隱私保護聯合學習的未來研究方向進行了討論。

//www.zhuanzhi.ai/paper/678e6e386bbefa8076e699ebd9fd8c2a

引言

隨著計算設備變得越來越普遍,人們在日常使用中產生了大量的數據。將這樣的數據收集到集中的存儲設施中既昂貴又耗時。傳統的集中式機器學習(ML)方法不能支持這種普遍存在的部署和應用,這是由于基礎設施的缺點,如有限的通信帶寬、間歇性的網絡連接和嚴格的延遲約束[1]。另一個關鍵問題是數據隱私和用戶機密性,因為使用數據通常包含敏感信息[2]。面部圖像、基于位置的服務或健康信息等敏感數據可用于有針對性的社交廣告和推薦,造成即時或潛在的隱私風險。因此,私人數據不應該在沒有任何隱私考慮的情況下直接共享。隨著社會對隱私保護意識的增強,《通用數據保護條例》(GDPR)等法律限制正在出現,這使得數據聚合實踐變得不那么可行。

在這種情況下,聯邦學習(FL)(也被稱為協作學習)將模型訓練分發到數據來源的設備上,作為一種有前景的ML范式[4]出現了。FL使多個參與者能夠構建一個聯合ML模型,而不暴露他們的私人訓練數據[4],[5]。它還可以處理不平衡、非獨立和同分布(非i.i.d)數據,這些數據自然出現在真實的[6]世界中。近年來,FL獲得了廣泛的應用,如下一個單詞預測[6]、[7]、安全視覺目標檢測[8]、實體解析[9]等。

根據參與者之間數據特征和數據樣本的分布,聯邦學習一般可以分為水平聯邦學習(HFL)、垂直聯邦學習(VFL)和聯邦遷移學習(FTL)[10]。

具有同構體系結構的FL: 共享模型更新通常僅限于同構的FL體系結構,也就是說,相同的模型被所有參與者共享。參與者的目標是共同學習一個更準確的模型。具有異構架構的FL: 最近的努力擴展了FL,以協同訓練具有異構架構的模型[15],[16]。

FL提供了一個關注隱私的模型訓練的范式,它不需要數據共享,并且允許參與者自由地加入和離開聯盟。然而,最近的研究表明,FL可能并不總是提供足夠的隱私和健壯性保證。現有的FL協議設計容易受到以下攻擊: (1)惡意服務器試圖從個人更新中推斷敏感信息,篡改訓練過程或控制參與者對全局參數的看法;或者(2)一個敵對的參與者推斷其他參與者的敏感信息,篡改全局參數聚合或破壞全局模型。

在隱私泄露方面,在整個訓練過程中,通信模型的更新會泄露敏感信息[18]、[19],并導致深度泄露[20],無論是對第三方服務器還是中央服務器[7]、[21]。例如,如[22]所示,即使是很小一部分的梯度也可以揭示相當數量的有關本地數據的敏感信息。最近的研究表明,通過簡單地觀察梯度,惡意攻擊者可以在[20],[23]幾次迭代內竊取訓練數據。

在魯棒性方面,FL系統容易受到[24]、[25]和[26]、[27]、[28]、[29]的模型中毒攻擊。惡意參與者可以攻擊全局模型的收斂性,或者通過故意改變其本地數據(數據中毒)或梯度上傳(模型中毒)將后門觸發器植入全局模型。模型投毒攻擊可以進一步分為:(1)Byzantine 攻擊,攻擊者的目標是破壞全局模型[13]、[30]的收斂性和性能;(2)后門攻擊,對手的目標是在全局模型中植入一個后門觸發器,以欺騙模型不斷預測子任務上的敵對類,同時在主要任務[26],[27]上保持良好的性能。需要注意的是,后門模型投毒攻擊通常利用數據投毒來獲取有毒的參數更新[24]、[26]、[27]。

這些隱私和魯棒性攻擊對FL構成了重大威脅。在集中學習中,服務器控制參與者的隱私和模型魯棒性。然而,在FL中,任何參與者都可以攻擊服務器并監視其他參與者,有時甚至不涉及服務器。因此,理解這些隱私性和健壯性攻擊背后的原理是很重要的。

目前對FL的研究主要集中在系統/協議設計[10]、[31]、[32]。聯邦學習的隱私和穩健性威脅還沒有得到很好的探討。在本文中,我們調研了FL的隱私和魯棒性威脅及其防御方面的最新進展。特別地,我們關注由FL系統內部者發起的兩種特定威脅:1) 試圖阻止學習全局模型的中毒攻擊,或控制全局模型行為的植入觸發器;2) 試圖泄露其他參與者隱私信息的推理攻擊。表2總結了這些攻擊的特性。

付費5元查看完整內容

作為傳統DNNs對圖的推廣,GNN繼承了傳統DNNs的優點和缺點。與傳統的DNNs一樣,GNN在許多圖形相關的任務中被證明是有效的,比如節點聚類和圖聚焦任務。傳統的DNNs已被證明易受專門設計的對抗性攻擊(Goodfellow et al., 2014b;徐等,2019b)。在對抗性的攻擊下,受害樣本會受到干擾,不容易被發現,但會導致錯誤的結果。越來越明顯的是,GNNs也繼承了這個缺點。對手可以通過操縱圖的結構或節點特征來欺騙GNN模型,從而產生圖的對抗性擾動。GNN的這種局限性引起了人們對在諸如金融系統和風險管理等安全關鍵應用程序中采用它們的極大關注。例如,在一個信用評分系統中,欺詐者可以偽造與幾個高信用客戶的關系,以逃避欺詐者檢測模型;垃圾郵件發送者可以很容易地創建虛假關注者,以增加虛假新聞被推薦和傳播的機會。因此,圖形對抗性攻擊及其對策的研究越來越受到人們的關注。在這一章中,我們首先介紹了圖對抗攻擊的概念和定義,并詳細介紹了一些具有代表性的圖對抗攻擊方法。然后,我們討論了針對這些對抗性攻擊的典型防御技術。

//cse.msu.edu/~mayao4/dlg_book/

付費5元查看完整內容

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在連續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。****

付費5元查看完整內容

基于協同過濾(CF)的潛在因素模型(LFM),如矩陣分解(MF)和深度CF方法,由于其良好的性能和推薦精度,在現代推薦系統(RS)中得到了廣泛的應用。盡管近年來取得了巨大的成功,但事實表明,這些方法易受對抗性例子的影響,即,這是一種微妙但非隨機的擾動,旨在迫使推薦模型產生錯誤的輸出。這種行為的主要原因是,用于LFM訓練的用戶交互數據可能會受到惡意活動或用戶誤操作的污染,從而導致不可預測的自然噪聲和危害推薦結果。另一方面,研究表明,這些最初設想用于攻擊機器學習應用程序的系統可以成功地用于增強它們對攻擊的魯棒性,以及訓練更精確的推薦引擎。在這方面,本調查的目標有兩方面:(i)介紹關于AML-RS的最新進展,以保障AML-RS的安全性。(ii)展示了AML在生成對抗網絡(GANs)中的另一個成功應用,生成對抗網絡(GANs)使用了AML學習的核心概念(即用于生成應用程序。在這項綜述中,我們提供了一個詳盡的文獻回顧60篇文章發表在主要的RS和ML雜志和會議。這篇綜述為RS社區提供了參考,研究RS和推薦模型的安全性,利用生成模型來提高它們的質量。

付費5元查看完整內容

題目: An Overview of Privacy in Machine Learning

序言: 在過去幾年中,谷歌、微軟和亞馬遜等供應商已經開始為客戶提供軟件接口,使他們能夠輕松地將機器學習任務嵌入到他們的應用程序中。總的來說,機構現在可以使用機器學習作為服務(MLaaS)引擎來外包復雜的任務,例如訓練分類器、執行預測、聚類等等。他們還可以讓其他人根據他們的數據查詢模型。當然,這種方法也可以在其他情況下使用(并且經常提倡使用),包括政府協作、公民科學項目和企業對企業的伙伴關系。然而,如果惡意用戶能夠恢復用于訓練這些模型的數據,那么由此導致的信息泄漏將會產生嚴重的問題。同樣,如果模型的內部參數被認為是專有信息,那么對模型的訪問不應該允許對手了解這些參數。在本文中,我們對這一領域的隱私挑戰進行了回顧,系統回顧了相關的研究文獻,并探討了可能的對策。具體地說,我們提供了大量關于機器學習和隱私相關概念的背景信息。然后,我們討論了可能的對抗模型和設置,涵蓋了與隱私和/或敏感信息泄漏有關的廣泛攻擊,并回顧了最近試圖防御此類攻擊的結果。最后,我們總結出一系列需要更多工作的開放問題,包括需要更好的評估、更有針對性的防御,以及研究與政策和數據保護工作的關系。

付費5元查看完整內容
北京阿比特科技有限公司