自主船舶有望提高未來海上航行的安全和效率水平。這類船舶需要感知的目的有兩個:執行自主態勢感知和監測傳感器系統本身的完整性。為了滿足這些需求,感知系統必須利用人工智能(AI)技術融合來自新型和傳統感知傳感器的數據。本文概述了對常規和自主航海船舶提出的公認的操作要求,然后著手考慮合適的傳感器和相關的人工智能技術用于操作傳感器系統。本文考慮了四個傳感器系列的整合:用于精確絕對定位的傳感器(全球導航衛星系統(GNSS)接收器和慣性測量單元(IMU))、視覺傳感器(單目和立體相機)、音頻傳感器(麥克風)和用于遙感的傳感器(RADAR和LiDAR)。此外,還討論了輔助數據的來源,如自動識別系統(AIS)和外部數據檔案。感知任務與定義明確的問題有關,如情況異常檢測、船舶分類和定位,這些都可以用人工智能技術解決。機器學習方法,如深度學習和高斯過程,被認為與這些問題特別相關。考慮到操作要求,對不同的傳感器和人工智能技術進行了描述,并根據準確性、復雜性、所需資源、對海洋環境的兼容性和適應性,特別是對自主系統的實際實現,對一些先進的例子進行了比較。
本文的結構如下。首先,我們介紹了這一技術領域的最新進展,并回顧了與自主船舶相關的法規。第二,我們回顧了自主船舶的關鍵性能指標(KPI),并將其轉化為操作要求。第三,我們回顧了與這些指標有關的傳感器技術。第四,由于傳感器以幾種不同的格式發布數據,我們回顧了已經成功應用于融合多模式數據的人工智能技術。最后,我們以對未來工作的建議來結束本文。
為了面對軍事防御的挑戰,軍隊及其戰術工具的現代化是一個持續的過程。在不久的將來,各種任務將由軍事機器人執行,以實現100%的影響和0%的生命風險。國防機器人工程師和公司有興趣將各種戰略自動化,以獲得更高的效率和更大的影響,因為陸地防御機器人的需求正在穩步增長。在這項研究中,軍事防御系統中使用的陸地機器人是重點,并介紹了各種類型的陸地機器人,重點是技術規格、控制策略、戰斗參與和使用目的。本研究還介紹了陸地機器人技術在世界軍事力量中的最新整合,其必要性,以及各國際防務公司對世界經濟的貢獻,表明其在軍事自動化和經濟穩定中的優勢。本報告還討論了近期發展的局限性和挑戰、機器人倫理和道德影響,以及與機器人安全有關的一些重要觀點和克服近期挑戰的一些建議,以促進未來的發展。
為了加強軍事防御系統,必須大力發展和提高智能自主戰略能力。在大多數第一世界國家,研究國防技術改進是實現軍事防御現代化的優先事項。未來戰爭的特點可以根據不同領域的沖突進行分析,如:海洋、陸地、空中、網絡、太空、電磁和信息。隨著現代智能和機器人技術的改進,跨域(X域)和多域戰略也需要被關注。無人自主X域(多域)系統,簡稱UAxS,現在是研究和發展的重點,以使軍事力量更加強大、有力和智能。圖1展示了多域和X域的戰爭模式。
圖 1:多域和 X 域戰爭模型
現代防御機制可以在四個相互關聯的領域進行研究:先進的戰艦、良好的通信、人工智能和自主武器。這基本上意味著在軍事防御系統中實施機器人技術。在戰場上,一支裝備精良的機械化部隊是指揮官非常重要的資產。在戰爭中,指揮官必須專注于火力、機動性、人機合作、決策、支持裝甲和指揮步兵。在未來,機器人和自動化系統將通過提供支持和減少負擔來幫助解決這些問題,因為這些系統將更加智能、可靠和合作。在最近的軍事活動中,機器人和自主技術被用于偵察、設備供應、監視、掃雷、災難恢復、受傷士兵的檢索等(Dufourda, & Dalgalarrondo, 2006;Akhtaruzzaman, et al., 2020)。
為了確保可靠的使用和獲得最高的技術影響,機器人必須在半自動化、自動化和人機交互工程方面進行良好的設計。無人地面車輛(UGV)很有前途,在國防應用中具有很大的潛力,在這些應用中高度需要更快和可靠的通信鏈接(鏈接預算)和快速獲取信息(RAtI)(Akhtaruzzaman, et al., 2020)。機器人的價值比人的生命還要低。機器人在感知、檢測、測量和分析方面速度更快。機器人沒有任何激情或情感,不會像人類那樣感到疲勞或疲倦,而是在極端和關鍵條件下保持運作。在不久的將來,機器人將成為作戰計劃和參與的核心技術(Abiodun, & Taofeek, 2020)。它們將能夠通過智能傳感器技術與環境溝通,通過建模理解環境,理解人類的行動,定義威脅,服從命令,以更高的處理能力獲取信息,通過信息交換和共享與其他機器人互動,通過先進的控制技術自主適應敵對環境,并通過強大的計算能力與自動生成的程序應用智能進行自我學習(Akhtaruzzaman, & Shafie, 2010a, 2010b; Karabegovi?, & Karabegovi?, 2019)。
在不久的將來,UGV系統將成為軍事行動的關鍵技術,因為它們將確保幾乎零人力風險,不需要將人力直接安置到戰斗中。UGV系統還將能夠開放各種設施,如負載、自動監視、邊境巡邏、風險降低、障礙物清除、力量倍增器、遠程操縱、信號中繼等(Sathiyanarayanan等人,2014)。陸地防衛機器人必須能夠適應各種崎嶇的地形、惡劣的環境和非結構化的區域,同時發揮指定的作用并保持指揮層次。作為軍事部隊的一種程度,陸地機器人不能給團隊帶來任何額外的工作負擔。因此,必須實施有效的人工智能(AI)工程,以實現UGV或陸地機器人與行動部隊之間可靠的人機合作。
今天的智能機器人或自主武器仍然處于狹義人工智能(ANI)的水平(Horowitz,2019年),或者以某種方式處于ANI和通用人工智能(AGI)之間。這反映出它們還沒有準備好在災難或戰爭等敵對情況下完全自主并做出可靠的決定。人類擁有在很大程度上應用感知經驗的智慧,能夠適應環境,并能在關鍵情況下做出適當的決定。如果這些能力能夠被植入機器人的大腦,該系統就可以說是AGI系統。盡管與人類相比,機器人可以抵御枯燥、骯臟和危險的工作,但它們包括一些有限的功能,如航點或目標導向的導航、障礙物檢測、障礙物規避、威脅檢測、人類檢測和識別、定位、地圖構建、通過圖像和聲音處理提取信息,以及與其他機器人的某種合作。因此,如果能確保機器人和人類之間的良好合作,機器人將在人類的監督下自主工作,那么軍用地面機器人將是最有效的。
本研究對軍用陸地機器人系統、最近的技術進步、應用和道德影響進行了回顧。一些發達國家和不發達國家的現狀,以及通過推進和發展軍事武器、自動化武器和智能技術對世界經濟的工業影響,都反映在審查研究中。本文還闡述了參與戰爭的機器人倫理以及該技術對道德國家的影響。該研究主要試圖通過確定最近的差距、局限性和技術進步的倫理影響,來確定地面機器人技術的最新應用和實施情況。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
軍事和應急反應仍然是固有的危險職業,需要準確評估威脅并在巨大的時間壓力下做出關鍵決策。與這些能力相關的認知過程是復雜的,并且已經成為一些重要的研究主題,盡管是針對特定的服務。在這里,我們試圖找出警察、軍隊、救護車和自由職業者在應急反應中的威脅評估、態勢感知和關鍵決策的共同點。通過對2000年1月至2020年7月期間發表的關于動態應急服務和軍事環境中威脅評估和關鍵決策理論的英文研究進行系統的文獻回顧,確定并批判性地評估了相關研究。共審查了10,084個標題和摘要,其中94個被確認為適合納入研究。然后,介紹了發現,主要集中在六個方面的調查。書目計量學、語言、態勢感知、關鍵決策、行動和評估。然后,我們對這些發現進行專題分析,以揭示四種服務之間的共同點。盡管該領域已有單一或雙重服務的研究,但這項研究的意義在于,它是第一個研究軍事、警察、自由和救護服務這四種情況下的決策和威脅評估理論的研究,同時也是第一個評估知識狀況并探索共性存在的程度以及模型或實踐可在每個學科中應用的研究。研究結果表明,所有的軍事和緊急服務人員都同時運用直覺和正式的決策過程,這取決于多種情況和個人因素。在制度上將決策限制在一個單一的過程中,而不考慮其他因素,或者在某些情況下不適當地訓練和應用其他適當的決策過程,可能會增加出現不良結果的可能性,或者至少會限制實現最高績效。本研究結果的應用不僅可以促進每個被研究的部門改進實踐,而且為協助未來的研究提供了基礎,并為探索動態背景下的威脅評估和決策的文獻做出了貢獻。
關鍵詞:態勢感知、決策、消防員、警察、救護車、軍隊、識別引物、啟發式、偏見、威脅評估
對自然事件(如地震)和蓄意事件(如恐怖襲擊)的有效應急反應包括對緊急事件的預測,以及在事件發生期間和之后立即采取的行動,以確保其影響最小化(AIDR 2013)。在警察、軍隊、救護車和自由服務的背景下,這要求響應人員能夠(1)準確地了解動態和不熟悉的環境,(2)評估潛在的機會和威脅以制定響應計劃,以及(3)在巨大的時間壓力下做出關鍵決定(Cohen-Hatton等人,2015;Perona等人,2019;Penney 2019;Reay等人,2018)。例如,當面對一個結構性緊急事件時,緊急救援人員必須在短時間內處理大量的視覺和聽覺信息,包括自由人的行為,傷亡人員的位置,可用的資源,以及相關結構的建設情況。同時,他們必須正式制定計劃和應急措施,以最大限度地增加救援傷亡人員的機會,并控制和撲滅火災,同時還要管理事故區域內的行動,最大限度地減少救援人員的風險。與這些能力相關的認知過程是復雜的(Reay等人,2018年;Stanton等人,2009年),容易受到偏見的影響(Kahneman,2011年;Seiler等人,2010年),難以掌握(Perona等人,2019年)。
當事件的規模和復雜性增加,影響到大量人口和地理區域時,響應可能會持續數周甚至數月。現在,事件經常跨越地區、州和國家的邊界,導致更需要在各機構間分享信息,并協調機構間的反應(Wilkinson et al. 2021)。這隨后給決策者帶來了額外的挑戰(Alison 和 Crego 2008;Comfort 2007;Flin 1996;House 等人 2013;Pollock 2013;Coskun 和 Ozceylan 2011)。一線響應者和事件管理者都必須與不同組織中的不同人員合作。在英國,來自幾個組織的代表組成了戰略協調小組,包括自由、警察、救護車、民間資源組織、衛生機構和政府(Wilkinson et al. 2021)。在美國和澳大利亞,相當的人員和機構組成了事件管理小組(AIDR 2013; NIFC 2021)。然而,多個機構在大規模災難中有效合作的挑戰仍在持續(Alison 和 Crego 2008; Wilkinson 等 2021; Pollock 2013)。
人們很容易認為問題的原因是來自不同機構的不同人員之間的溝通中斷,因此對情況和行動要求的集體理解在翻譯中丟失。相反,我們認為原因是每個服務人員通過他們的培訓和標準操作程序的視角,對情況有相當不同的看法。部分原因是決策和威脅評估理論的差異(Coskun和Ozceylan,2011年),這些理論最終指導了行動反應。而且,傳統上,這些理論是按服務流來劃分的。盡管消防員、護理人員、警察和軍事人員的動態和高后果環境的情況相似,但他們的人為因素被孤立地考慮。
我們認為,這些服務在行動和理論方面的相似性比以前所確定的要大。我們建議,如果能夠發現和利用各部門之間的共同點,就可以在改善機構間協調和各部門的績效方面取得進展。然后,可以在服務之間形成共同的理解,現有的研究可以從服務領域轉化到另一個領域。反過來,這可以促進圍繞應急管理的研究和由此產生的理論,這些理論是關于服務的,而不是關于服務的。
在此,我們試圖找到警察、軍隊、救護車和自由服務機構之間在威脅評估、意識形成和緊急決策方面的共同點。我們對這些研究領域和這些應急服務中的相關研究進行了回顧。首先,我們描述了我們的目的和目標,然后是我們的方法。然后,我們介紹了與應急管理相關的五個研究方向的結果。語言、情境意識、關鍵決策、行動和評估(術語定義見下文 "第1.1節")。然后,我們整合這些發現,以揭示四種服務之間的共同點。
這項研究的意義在于,它不僅是第一個彌合這一差距并研究軍事、警察、自由和救護服務等多種背景下的決策和威脅評估理論的研究,而且也是第一個評估知識狀況并探索共性存在的程度以及模型或實踐可以跨學科應用的研究。研究結果的應用不僅可以促進每個被研究的服務部門改進實踐,而且為協助未來的研究提供基礎,并為探索動態背景下的威脅評估和決策的文獻做出貢獻。
本研究的范圍是多學科的,涵蓋了民間緊急服務中的動態環境,如治安、院前救護、消防和軍事行動。我們的目標是提煉出在動態應急服務和軍事環境中的威脅評估、感知和關鍵決策的研究。我們還旨在發現服務之間的共同點。采用與House等人(2013)類似的方法,我們將目標分解為六個不同的調查方向。
1.書目計量學,允許按研究設計、服務類型、來源國、出版年份和出版領域對研究的 "傳播 "進行分類。
2.語言,研究中的術語、定義和描述。
3.態勢感知(SA)、威脅評估和意識制造。
4.關鍵決策(CDM),用于決定行動方案的過程。
5.行動,為執行該決定而嘗試和完成的任務;以及
6.評估,對決定和后續行動的反思,以確定是否做出了一個 "好決定"。
雖然文獻計量學的理由是不言自明的,但我們采用了一種迭代方法(Morgan and Nica 2020)來選擇第2至5條調查路線。通過這種方式,研究小組在研究的概念階段對最初的調查路線進行了修改,最后的調查路線旨在為DeSantis和Ugarriza(2000)所描述的反復出現的趨勢和不同的表現形式帶來意義和認同。因此,調查路線的設計是為了捕捉和統一各種特定背景研究的性質或基礎,使之成為一個有意義的整體(DeSantis和Ugarriza 2000)。
美國陸軍工程研究與發展中心(ERDC)的研究實驗室目前正在開發仿真工具,以協助開發可選擇的載人、遠程操作和完全自主的車輛,重點是地形與車輛的交互,特別是在冬季地形條件下。其他ERDC實驗室與地面車輛系統司令部(GVSC)一起,重點研究保證位置、時間和導航,該司令部正在進行開發可選擇的載人和自主平臺的研究,主要集中在車輛內部的硬件和軟件,很少強調外部安裝的地形傳感器或冬季操作環境。美國陸軍寒冷地區研究和工程實驗室(CRREL)在冬季和極端環境下進行車輛機動性研究,這在模擬和開發可選的載人和自主車輛方面是需要的。這項工作的范圍是調查人工智能和機器學習對冬季條件下運行的軍用車輛的適用性。本文描述了實現這一目標的初步努力。
自主車輛在民用方面的應用正在成為現實。在智能駕駛輔助方面,第三級車輛自主性(智能巡航控制、行人識別、自動剎車、盲區傳感器、罕見的交叉交通警報、避免碰撞等)已在商業和私人車輛上使用多年。第四和第五級自主性(有監督的自主性和完全無監督的自主性)目前正在試驗中。盡管在民用領域取得了重大進展,但軍用車輛的自主性仍然是一項相當具有挑戰性的任務。軍用自主車輛的主要區別是:非公路運行、未知地形的運行,以及在開放空間完全重新規劃路線的可能性。這種環境要求智能自主控制算法和環境感知與工業界的民用應用不同。具體來說,需要解決先進的和當前的地形感知、檢測無法通行的路線、確定可通行的替代路線和車輛在空地上的改道,以及針對特定地形條件和車輛的最佳車輛控制等任務。提交的工作描述了在解決其中一些挑戰方面的最新進展。結果表明,其中一些挑戰可以通過機器學習和人工智能算法成功解決,從而為軍用車輛的人工駕駛提供實質性幫助。
絕大多數關于自主車輛的文獻都是在城市條件下的駕駛。非公路車輛沒有道路指引其軌跡,也沒有一致的駕駛地面,還必須考慮不平坦的三維地形、三維方向。這主張使用更復雜的人工智能方法,如PilotNet卷積神經網絡,最近通過攝像機記錄72小時在不同城市條件下的成功駕駛,并使用這些數據作為訓練集,來教車輛自我轉向(Bojarski等人,2017)。另一方面,在不使用神經網絡的情況下,收集了大量關于傳統自動車輛控制的知識。例如,DARPA 2005年挑戰團隊的獲勝者沒有使用神經網絡,而是依靠更傳統的自動控制算法來自動控制他們的機器人斯坦利(Thrun等人,2006)。為了利用這些知識,同時又與越野作業的挑戰性要求相關,我們建議實施一種混合方法,將人工智能和經典控制方法結合起來。
具體來說,我們建議使用神經網絡來持續確定和更新車輛行駛的地形類型,以及車輛的 "臨界值",即車輛沿途必須遵守的行動限制,如允許的最大速度、最大的加速和減速率,以及車輛的范圍和最大的轉向率。將使用兩種人工智能算法。一個用于自動地形分類,另一個用于預測由第一個算法確定的地形類型的關鍵控制值。通過使用神經網絡來預測臨界值,車載自主控制系統不需要專門考慮所有的地形類型和方向,而是適當地定制,以便根據當前的駕駛條件實時調整。圖3概述了模型的結構。當前的地形估計、地形類型和條件、期望的軌跡和車輛狀態將被用來預測速度、最大加速/減速率和轉向的關鍵約束。這些值將作為傳統的剎車/油門的比例積分衍生(PID)控制器和轉向的模型預測控制(MPC)控制器的目標值。然后,實際的車輛狀態將被評估,地形、臨界值和路線將被相應地更新,直到車輛到達預期的目的地。
圖3. 擬議的混合自主控制方法的結構:使用神經網絡預測給定地形類型、車輛方向、地形和表面條件的臨界值,并設置為自適應MPC或PID控制器的目標。
任務規劃對于建立成功執行任務所需的態勢感知至關重要。全規劃有助于預測不同的情況,這一點尤其重要,因為威脅的多樣性和復雜性會增加。規劃過程是需要收集、分析相關信息并將其整合到一個全面的規劃中。由于第 5 代平臺、傳感器和數據庫生成的大量信息,這些流程面臨壓力。
本文描述了軍用直升機任務規劃環境的創建,在該環境中,不同來源的數據被整合、分析和可視化。參與規劃過程的所有人員都可以查看所有可用信息并與之交互。算法處理后的數據,為規劃的特定部分提供潛在的解決方案。交互式可視化有助于直觀理解輸入數據和算法輸出,而交互式增強現實環境有助于有效協作。
集成系統和算法是未來智能、協作任務規劃的重要組成部分,因為它們允許有效處理與第 5 代平臺相關的大量多樣的數據流。結合直觀的可視化和協作,這使工作人員能夠構建靈活且響應迅速的操作所需的共享 態勢感知。
圖1: 增強協同技術下的智能任務規劃(IMPACT)
IMPACT系統由三層組成(見圖2):
圖2:從功能角度看IMPACT架構。
NATO AVT-355 于 2021 年 5 月 3 日至 5 月 7 日期間在線舉辦了一次互動研討會。該研討會探討了提高空中、地面和海上應用自主平臺(UxVs)的相關需求、進展和挑戰。研討會涵蓋了 UxV 的四個不同主題領域。目前的能力不足以滿足作戰需求。該領域似乎處于發展的早期階段,在所有領域都有快速但分散的進展。與傳統載人平臺相比,UxVs 要求設計人員更詳細地了解操作環境和維護方法。提出了處理準備就緒的系統層次結構。在這個層次結構中,在傳感和融合單個組件和系統方面取得了更多進展,而平臺級綜合和自適應任務和后勤規劃處于早期發展階段。
北約SCI-341研討會的主要科學目標是概述有關自主系統群體 (AS) 中態勢感知 (SA) 問題的最新技術,并確定未來發展與北約行動的相關性。在廣泛的領域研究了態勢感知:太空、海洋、網絡、社交媒體、特大城市。
這項研討會的想法源于關于將自動化和基于人工智能的系統集成到無需人工直接監督即可運行的系統和集群系統。我們知道,就人類而言,良好的 SA 水平是成功執行任務的重要先決條件。因此,我們詢問自動化系統和群體是否也是如此,以及群體的新興使用如何影響人類 SA。
研討會期間提交了所有八篇常規論文,除論文外,美國空軍前首席科學家 Mica Endsley 博士發表了一篇主題演講。
演講分為三個部分:1)自主和態勢感知,2)人類作為一個循環系統,3)群體智能和態勢感知。第一場會議討論了用于機器人和自主系統建模和仿真的群體控制方法、氣象情報和合成環境。第二場會議討論了如何通過群體展示、異常檢測和可解釋的人工智能為人類操作員提供更好的 SA。第三場討論了通過群體任務分配的群體智能、使用合成環境的群體性能評估以及群體與群體之間的交互。
Session 1: 態勢感知與自主性——3篇論文
Session 2: 人在循環系統中——2篇論文
Session 3: 群體智能與態勢感知——3篇論文
A Comparison of Distributed and Centralized Control for Bearing Only Emitter Localization with Sensor Swarms(分布式和集中式控制在單方位輻射源定位和傳感器群定位中的比較)
傳感器群具有增強態勢感知的潛力。如果傳感器群中多個資產協同工作,則存在兩個挑戰:優化傳感器部署和同時最大限度地減少操作員的工作量。如果管理單個資產的傳感任務使操作員超負荷,傳感器需要自動調整其行為。如何實現控制結構有多種可能性。
本文提供了對路徑規劃的調查。要完成的任務是使用兩個僅承載傳感器的平臺定位多個目標。作者認為,“通過目標分配算法解決路徑規劃問題特別有趣,因為存在解決分布式系統上的線性分配問題的方法,僅通過動態通信圖連接”。作者比較了六種不同的控制策略:分布式樹搜索 (DTS)、分布式優化器 (DO)、分布式迭代計劃交換 (DIEP)、中央樹搜索 (CTS)、中央優化器 (CO) 和中央分配 (CA)。比較考慮了兩個方面:一個場景中的所有目標都被本地化的時間,以及必要的計算時間。
中央控制意味著評估所有傳感器/平臺承載傳感器的聯合動作空間,并將最佳動作分配給每個單獨的傳感器載體。這種方法需要強大的計算能力,因為必須解決高維問題。作者建議在本地為每個平臺規劃行動。通過這種分散的方法,可以實現多個傳感器的聯合任務的協調行為,其中每個平臺計算自己的控制向量并將其發送給其他平臺。重復此過程,直到解決方案收斂。分散的方法通常不能提供最佳的聯合解決方案。
在評估中,目標被認為是威脅;因此,平臺需要與當前目標估計保持威脅距離。此外,不同算法的規劃范圍(h 總動作數,I 步數,具有恒定控制輸入)是不同的(由作為首字母縮略詞后綴的數字表示,例如 DTS3)。下圖顯示了三種評估場景:角度和水平/垂直、Circle-4 和 Circle-8。使用了兩種不同的起始配置(相同和相反)。所有模擬都使用了 100 次蒙特卡羅運行。論文(Schily, H., Hoffmann, F., Charlish, A. A Comparison of Distributed and Centralized Control for Bearing Only Emitter Localization with Sensor Swarms. STO-MP-SCI-341)的第2章提供了詳細的評估設計。
結果如下。總體而言,CA3 顯示出可喜的結果:它在角度、水平/垂直、Circle-4 和 Circle-8-Same 場景中表現最好。對于 Circle-8-Opposite,“CA 算法很難找到最佳分配。這是因為平臺在決定是按順時還是逆時針訪問目標時并不相鄰。”對于這種情況,DIEP 和 CP3 表現最好。DIEP 的表現與具有相同時間范圍的中央規劃者相似。由于它需要較低的計算成本,因此它被認為是路徑中央規劃的有趣替代方案。對于每種方法,較長的規劃范圍對結果是有益的。
作者認為 CA 算法“似乎在集中式和分布式規劃方法之間實現了很好的折衷。在所進行的實驗中,它唯一的弱點是同時定位許多目標,這些目標相對于傳感器平臺的起點在各個方向上均勻分布(第 8 圈)。”
AI-Powered High Resolution Weather Intelligence Platform(AI驅動的高分辨率天氣智能平臺)
天氣對 UxV(無人駕駛車輛)的運營安全和效率有重大影響。風、湍流、極端溫度、濕度、閃電、云、結冰和降水只是許多局部天氣現象中的一小部分,這些現象決定了 UxV 在給定區域可以做什么或不可以做什么,我們對這些微觀現象的理解實時和預測對于任務成功至關重要。當考慮成群的 UxV 時,挑戰甚至更大,其中每輛車的態勢感知 (SA) 都嚴重依賴于另一輛車。在當今的戰場上,天氣的影響以及我們預測和應對天氣的能力,可以決定任務的成敗。
Tomorrow.io 由軍事飛行員創立,是世界上發展最快的氣象技術公司。在短短的時間內,Tomorrow.io 已成為軍事、航空和無人駕駛航空系統 (UAS) 行業的領先氣象解決方案,客戶包括主要航空公司、武裝部隊以及無人機和無人機行業的領導者。Tomorrow.io 的團隊由 100 多名科學家、工程師、產品和業務經理組成。憑借在數值天氣預報、人工智能和大規模并行計算以及航空、國防、產品開發和用戶體驗/用戶界面 (UX/UI) 方面的豐富經驗,Tomorrow.io 具有獨特的資質,可以實現范式轉變氣象行業。
大多數天氣預報在全球范圍內都存在同樣的運營差距。缺乏數據源,特別是在武裝部隊行動的偏遠地區,以及沒有雷達和氣象站的地區,以及這些地區公開可用模型的粗分辨率,是缺乏準確性和細節的主要原因提供的數據和預測。此外,原始的、不可操作的天氣信息的輸出使最終用戶(如 UxVs 操作員)的決策過程和 SA 支持變得更加困難。
Tomorrow.io 開發了一種整體方法來解決特定于 UxV 的天氣挑戰。相關的 Tomorrow.io 功能集成了新穎的傳感技術、全面而靈活的數據同化引擎、定制的建模框架、機器學習技術以及用于靈活交付數據和見解的現代云原生軟件架構的組合。
對于高質量的天氣預報,觀測(地面、空中、衛星)、模型(全球、大陸)和高性能(數值天氣預報、大規模并行計算)計算是必要的。在大量 UxV 運行的地區,氣象站或雷達站可能不可用,或者可能在相關空域上方進行采樣。此外,這些地區的天氣模型也可能不可用。該貢獻通過提出高分辨率天氣情報平臺解決了這個問題;下圖顯示了用戶界面。數據來自各種“傳統和非傳統傳感技術”。這些模型能夠攝取不同的數據源,包括 UxVs 傳感器。這樣做,可以提供“以亞公里空間分辨率實時飛行條件的完整圖片”以及高頻時間更新。在數據稀疏的地區,UxVs可以創建一個獨立的天氣觀測“網絡”。使用綜合定制大氣模型 (CBAM),可以預測長達 14 天。提議的系統為 UxVs 操作提供了幾個好處,包括快速更新、多傳感器 UxVs 天氣分析和高分辨率歷史基線分析和預測。UxVs 跟蹤和提取原位數據支持人類操作員進行實時決策。此外,從高分辨率數據中獲得的洞察力和警報可以在必須快速做出決策的情況下為操作員提供支持。開發和發布時間表計劃從 2019 年到 2025 年。
Synthetic Environment for Robotics and Autonomous Systems(機器人與自主系統的合成環境)
在未來的軍事作戰環境中使用機器人自主系統(RAS)和機器人群將成為現代戰爭的主要挑戰之一。自 2016 年以來,北約建模與仿真卓越中心 (M&S COE) 一直在開發用于概念和能力開發的機器人研究 (R2CD2) 項目,以分三個年度階段交付開放、可擴展、模塊化、基于標準的 M&S 工具原型架構,用于 RAS 和 Robotic Swarms 的實驗。具體來說,它側重于將 C2SIM 標準擴展到無人自主系統 (UAxS) 的實驗,以便在指揮與控制 (C2) 和仿真系統之間交換命令和報告。R2CD2 第二代架構實現了戰術網絡模擬和網絡效果功能,以支持軍事通用作戰圖片 (COP) 表示中公認的網絡圖片層的實驗和概念驗證,以擴展和改進 RAS 和集群態勢感知在戰術和操作層面。該實驗于 2020 年進行,通過多個互操作性標準證明了在三個不同位置的不同系統之間進行復雜交互的可行性。
該架構的最后一代,名為 R2CD2 EVO,引入了虛擬模擬、用于真實和模擬無人機系統 (UAS) 的真實地面控制站 (GCS) 和提供包括網絡層的 RAS/Swarm COP 的 C2 系統。該平臺使我們能夠研究、分析和對抗 RAS 系統和群體,根據任務任務和模擬系統的動態姿態,突出描述對來自建模傳感器的外部刺激作出反應的過程的行為。平臺數據設置場景是基于未來特大城市模型 (WISDOM) 實施的城市環境開發的,并將兵棋推演概念擴展到 RAS,充當訓練測試場,不僅用于在軍事期間使用 RAS 系統人員的標準培訓任務,也可作為能力發展的態度訓練算法。作為研究和開發活動的結果,R2CD2 EVO 被提議作為開發 RAS 合成環境的基石,以支持北約和各國在多域 UAxS 上的概念開發、實驗、培訓和演習活動。
Swarm View: Situation Awareness of Swarms in Battle Management Systems(群體視角:戰斗管理系統中群體態勢感知)
多架無人機(UAV)的使用意義重大。因此,人機交互及其交互設計變得越來越重要,特別是在戰場上的軍事偵察中。然而,無人機群規模的不斷擴大帶來了許多需要解決的挑戰,例如具有高動態性的復雜情況增加了對用戶的需求。
作者解決了人機交互的人體工程學顯示問題,重點關注戰斗管理系統中的集群。隨著無人機群規模的增加(例如,多達數千個戰術無人機),情況可能很快變得復雜和混亂。因此,需要仍然能夠為群體的所有者提供 SA 以避免信息過載的解決方案。
首先,該貢獻提供了文獻調查的結果。一方面,作者提取了單個人類操作員必須監控大群體時可能出現的挑戰:復雜的操作畫面、高動態、信息過載以及對用戶的需求不斷增加。另一方面,它們為符合人體工程學的顯示器設計提供了現有的指導方針。基于此,作者設計了四種不同的面向應用的原型布局,針對鼠標、鍵盤和觸摸輸入進行了優化:
基于領導者的呈現:群體分成團隊;可視化一個團隊的領導機器人。 基于群體的呈現(下圖):將整個群體作為一個單元;整個群體的可視化,單一機器人可分解。 基于區域的呈現:區域、POIs等的可視化;與環境的交互。 基于縮放的呈現:縮放級別而定的可視化;信息級別由用戶決定。 所有布局都包含六個主要組件,這些組件適用于各自的布局。地圖 (1),基于谷歌地圖 (2021) 是基礎并位于顯示中心。它提供縮放、小地圖、帶有附加信息的藍軍和紅軍、未知對象以及區域和興趣點 (POI) 選項等功能。區域管理 (2) 允許用戶創建例如操作區域 (AO) 或 POI。任務管理 (3) 包含一個時間表,其中包含所有計劃的、當前的和已完成的任務,并允許為群體或部分群體計劃新任務。狀態信息 + 直播 (4) 顯示集群或無人機的狀態。直播的顯示尺寸(來自選定的無人機或區域)是可變可調的。Red Force 信息 (5) 在單獨的列表中顯示未知和已知對象(除了地圖顯示)。輔助系統優先考慮支持用戶決策的傳入對象。對話框 (6) 顯示傳入的警報、警告和消息。 這四種布局將很快與德國陸軍偵察部隊的焦點小組進行評估。根據來自特定軍事角色和層級的反饋,將迭代調整布局。進一步的開發/實驗將確定 SA、用戶體驗和直觀性(實驗室和現場測試),并為交叉設計和群體交互用戶界面提供建議。
Anomaly detection and XAI concepts in swarm intelligence(群體智能中的異常檢測和XAI概念)
對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,我們強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解。
作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。
作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。
作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。
一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。
在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。
作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。
A New Swarm Collection Tasking Approach for Persistent Situational Awareness(一種基于群體集合任務的持續態勢感知方法)
涉及移動自組織傳感器代理的群技術應用越來越多,并且可擴展到多個軍事問題領域,例如戰術情報、監視、目標獲取和偵察 (ISTAR)。在 ISTAR,一組半自主傳感器協同完成收集任務和執行,以彌合信息需求和信息收集之間的差距,以保持持續的態勢感知。最先進的貢獻在很大程度上暴露了多維問題的復雜性。由于傳感器平臺資源容量和能量預算有限,它們通常采用特定的規定傳感器行為,導致過度保守的連接約束、有偏見的決策和/或融合解決方案結構。這些可能會任意傳達顯著的機會成本并對整體績效產生不利影響。
作者介紹了一種用于 ISTAR 中移動 ad hoc 代理(情報、監視、目標獲取和偵察)的群體收集任務的方法。目標是利用代理來增強持續的態勢感知,代理彌合信息需求和信息收集之間的差距。為此,半自主代理必須協同完成收集任務和執行。盡管板載處理能力和能量預算有限,但要實現這一目標是一項挑戰。
下圖(左)顯示了一個典型的收集任務上下文:“它定義了一個網格認知圖表示,反映了對特定感興趣區域的態勢感知,捕獲了關于單元占用和目標行為的先驗知識、信念和/或已知概率分布”。
所提出的群體收集任務分配方法提出了集中收集計劃,由群體領導者偶爾調解;然而,計劃的執行是分散的。簡而言之,“該方法結合了一種新的緊湊圖表示和一個合理的近似決策模型來執行傳感器代理路徑規劃優化,受周期性連接的影響,以實現信息共享、融合、態勢感知和動態重新分配/規劃”。
用于收集計劃的帶有反饋決策的新開環模型(下圖,右)可在后退的時間范圍內最大化收集價值。周期性群連接支持匯節點的觀測傳播、數據/信息融合、情況評估和重新規劃。向匯節點的周期性最大收集傳播考慮到能量約束。傳播集合的通信規劃/路由方案利用最小生成樹來最小化能量消耗。有關包括相關數據在內的詳細信息,請參閱論文第 3 章中的大量論文部分。
由于作者,所提出的方法擴展了群體的能力,以更好地滿足任務需求,并允許顯著擴展觀察區域。“如果使用精確的問題解決方法,新的問題表述也為解決方案最優性的可計算上限鋪平了道路”。
A Framework Based On Deep Learning Techniques For Multi-Drone ISR Missions Performance Evaluation In Different Synthetic Environments(不同合成環境下基于深度學習技術的多無人機ISR任務性能評估框架)
本研究旨在關注當今模擬器的合成環境如何與應用于視頻分析的神經網絡和深度學習協同作用,特別是使用多無人機/集群系統執行 ISR 任務。事實上,用于模擬和游戲的現代虛擬引擎已經達到了讓不那么專心的觀察者感到困惑的真實水平。因此,自發出現的問題是,即使是人工智能也可以被“欺騙”,從而改變無人機上的行為和決策,從而改變機隊的最終行動。也就是說,用更科學的術語來評估無人機搭載的自動學習系統(例如神經網絡)的特征類型和數量是否可以從合成圖像中提取并反映在具有顯著優勢的連續環境中。訓練過程的精細和/或昂貴的階段,例如數據集創建和運動前測試。事實上,能夠隨意對模擬世界中的元素進行建模,可以可靠地再現甚至在現實生活中無法再現的情況和場景(例如,用于檢測閃電或爆炸的網絡),從而允許創建根據現代深度學習方法,數據集大小一致,并減少了恢復這些圖像的物理時間,同時還考慮了機載計算能力和容量的限制。此外,在降維過程中,由于真實場景的離散化導致的次要細節是否可以在某些情況下充當數據集預處理中的主成分分析 (PCA) 過濾器,這是值得詢問的。
所提出的研究方法將是實驗性的,并將預見到應用的雙重方向。在第一階段,我們想了解在真實數據集上訓練的神經網絡在一架或多架無人機上如何在不同的合成環境中表現。將檢查三個不同的模擬器,即 VRForces、ROS Gazebo 和 VBS4,以了解圖形細節的增加將如何影響準確度和精確召回曲線。擬議論文中提出的研究涉及人工智能對象識別和跟蹤領域,特別關注定位問題,因此檢測特定類別的對象,如人和車輛。在我們研究的第二階段,網絡將準備好部署,考慮到可能準備使用 COTS 或定制自動駕駛儀的硬件,使用協作和智能機隊模擬 ISR 任務的真實場景的無人機。在這個階段,我們集中在一個名為 SWARM 的項目上:一個大型工業研發 Vitrociset 項目。它是一個啟用人工智能的指揮和控制 (C&C) 系統,能夠執行和審查異構無人機小型/微型協作機隊的 ISR 任務。SWARM 將用作所提出框架的測試平臺,在不同的合成環境中測試和評估多無人機 ISR 任務的深度學習技術。
下圖(左)顯示了仿真系統架構。實驗框架包含三個合成環境。對于 VBS4,實現了一個使用一個或多個無人機生成合成場景的插件。每架無人機都配備了能夠生成視頻流的虛擬攝像頭。對于 ROS Gazebo,“圖像是使用配備 IMU 和可通過文件配置并作為 C++ 插件實現的 Iris 無人機相機獲取的”。為 VR-Forces 環境實現了類似的插件。使用針孔模型對三種環境的場景視圖進行標準化,以實現相同的觀看特性。
單獨使用合成圖像可能會引入新的偏見。因此,作者應用經典的計算機視覺和圖像處理方法來識別在 VISDRONE 數據集(真實)圖像中檢測到的對象與在三個模擬器中識別的對象之間的差異。與真實數據相比,將人和車輛的輪廓提取為對象類顯示信息丟失。
評估場景使用城市環境,包括人、車輛、道路、房屋和植被。飛行計劃包括低速(1-3 m/s)、5-30 m 的地面高度和靜止的天氣條件。有效載荷視頻流的采集使用 30 fps 的幀速率。生成了三個版本的 TFRecords(標準張量流數據格式)(過濾應用于邊界框的區域:非、100 像素和 200 像素)。所有三個測試集都包含 6 個對象類別(人、汽車、貨車、卡車、公共汽車、電機)。
考慮了 11 個 DNN 模型,使用 Tensorflow 作為 AI 框架。大型數據集 COCO、KITTI 和 VISDRONE 被視為預訓練數據集。使用 Fastern RCNN Resnet(在 VISDRONE 數據集上預訓練)獲得了最好的結果。VBS4 擁有三種模擬環境中最好的圖形引擎,是最接近現實的一種(下圖右)。總體而言,合成環境被證明是在現實世界中訓練的神經網絡的良好測試平臺(最佳情況下準確率約為 80%)。
Interacting Swarm Sensing and Stabilization(交互群感知與穩定化)
最近,在生物學和物理學中研究的群體理論已被應用于機器人平臺,包括將群體應用于防御。雖然相關工作側重于單個群體行為,但這一貢獻將調查擴展到多個相互作用的群體及其產生的模式。作者提供了一種理論方法來研究具有非線性相互作用的兩個群體的碰撞。目的是預測在什么情況下兩個群體在兩個群體碰撞后可以結合形成一個新引擎(mill)。這個問題的背景是在某些軍事場景中需要重定向或捕獲一個群體。
下圖(左)顯示碰撞后的狀態取決于碰撞角度以及耦合強度。下圖(右)顯示了一個示例,其中兩個群體(最初處于植絨狀態)接近融合狀態。這種行為的原因是,“當兩個群體接近時,每個智能體開始感知智能體內部群體的力量,導致兩個群體圍繞彼此旋轉,同時保持接近恒定的群體間密度。隨著時間的推移,這兩個群體慢慢地放松到由來自兩者的均勻分布的智能體組成的充分混合的融合狀態”。
應用的分析方法依賴于這樣的假設,即在碰撞時,兩個群體在一個極限循環附近振蕩,每個群體圍繞另一個群體旋轉,同時保持近似恒定的密度。使用確定極限圓狀態穩定性的剛體近似,可以做出僅取決于物理群參數的預測。這為小碰撞角的臨界耦合提供了一個下限。對于對稱群體(具有相同的數量和物理參數),從分散到融合的過渡點類似于逃逸速度條件,其中臨界耦合與每個群體的平方速度成比例,與每個群體中的智能體數量成反比。
使用包含 5-8 個 Crazyflie 微型無人機的混合現實設置,在初步碰撞群實驗中證實了理論預測。實驗考慮了 8 個真實機器人 + 8 個模擬機器人、5 個真實機器人 + 45 個模擬機器人和 50 個模擬機器人的場景。對于所有情況,都觀察到固定融合。初步結果表明,我們可以根據選擇的物理參數讓一個群體捕獲另一個群體。此外,基于已知的參數和群體大小,它還應該是可預測的,當碰撞群體不會形成融合狀態時,即一個群體無法捕獲另一個群體。未來的工作將解決如何進入散射狀態或保持聚集狀態,以及將通信延遲或內部和外部噪聲效應的影響納入理論。
低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。
【報告概要】
在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。
無人機的參數化定義包括以下幾類:
描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。
考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。
在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。
由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。
無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。
然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。
sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。
此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。
圖1 無人機類別與其他類別/參數的關系(part 1)
圖2 無人機類別與其他類別/參數的關系(part 2)
圖3 參考坐標系
【報告目錄】