亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Growing literature has shown that powerful NLP systems may encode social biases; however, the political bias of summarization models remains relatively unknown. In this work, we use an entity replacement method to investigate the portrayal of politicians in automatically generated summaries of news articles. We develop a computational framework based on political entities and lexical resources, and use it to assess biases about Donald Trump and Joe Biden in both extractive and abstractive summarization models. We find consistent differences, such as stronger associations of a collective US government (i.e., administration) with Biden than with Trump. These summary dissimilarities are most prominent when the entity is heavily featured in the source article. Our systematic characterization provides a framework for future studies of bias in summarization.

相關內容

The advent of ChatGPT by OpenAI has prompted extensive discourse on its potential implications for science and higher education. While the impact on education has been a primary focus, there is limited empirical research on the effects of large language models (LLMs) and LLM-based chatbots on science and scientific practice. To investigate this further, we conducted a Delphi study involving 72 experts specialising in research and AI. The study focused on applications and limitations of LLMs, their effects on the science system, ethical and legal considerations, and the required competencies for their effective use. Our findings highlight the transformative potential of LLMs in science, particularly in administrative, creative, and analytical tasks. However, risks related to bias, misinformation, and quality assurance need to be addressed through proactive regulation and science education. This research contributes to informed discussions on the impact of generative AI in science and helps identify areas for future action.

Understanding causal relations is vital in scientific discovery. The process of causal structure learning involves identifying causal graphs from observational data to understand such relations. Usually, a central server performs this task, but sharing data with the server poses privacy risks. Federated learning can solve this problem, but existing solutions for federated causal structure learning make unrealistic assumptions about data and lack convergence guarantees. FedC2SL is a federated constraint-based causal structure learning scheme that learns causal graphs using a federated conditional independence test, which examines conditional independence between two variables under a condition set without collecting raw data from clients. FedC2SL requires weaker and more realistic assumptions about data and offers stronger resistance to data variability among clients. FedPC and FedFCI are the two variants of FedC2SL for causal structure learning in causal sufficiency and causal insufficiency, respectively. The study evaluates FedC2SL using both synthetic datasets and real-world data against existing solutions and finds it demonstrates encouraging performance and strong resilience to data heterogeneity among clients.

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

A treatment policy defines when and what treatments are applied to affect some outcome of interest. Data-driven decision-making requires the ability to predict what happens if a policy is changed. Existing methods that predict how the outcome evolves under different scenarios assume that the tentative sequences of future treatments are fixed in advance, while in practice the treatments are determined stochastically by a policy and may depend, for example, on the efficiency of previous treatments. Therefore, the current methods are not applicable if the treatment policy is unknown or a counterfactual analysis is needed. To handle these limitations, we model the treatments and outcomes jointly in continuous time, by combining Gaussian processes and point processes. Our model enables the estimation of a treatment policy from observational sequences of treatments and outcomes, and it can predict the interventional and counterfactual progression of the outcome after an intervention on the treatment policy (in contrast with the causal effect of a single treatment). We show with real-world and semi-synthetic data on blood glucose progression that our method can answer causal queries more accurately than existing alternatives.

Analysing historical patterns of artificial intelligence (AI) adoption can inform decisions about AI capability uplift, but research to date has provided a limited view of AI adoption across various fields of research. In this study we examine worldwide adoption of AI technology within 333 fields of research during 1960-2021. We do this by using bibliometric analysis with 137 million peer-reviewed publications captured in The Lens database. We define AI using a list of 214 phrases developed by expert working groups at the Organisation for Economic Cooperation and Development (OECD). We found that 3.1 million of the 137 million peer-reviewed research publications during the entire period were AI-related, with a surge in AI adoption across practically all research fields (physical science, natural science, life science, social science and the arts and humanities) in recent years. The diffusion of AI beyond computer science was early, rapid and widespread. In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to cover over half of all research fields by 1972, over 80% by 1986 and over 98% in current times. We note AI has experienced boom-bust cycles historically: the AI "springs" and "winters". We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.

R and Python are among the most popular languages used in many critical data analytics tasks. However, we still do not fully understand the capabilities of these two languages w.r.t. bugs encountered in data analytics tasks. What type of bugs are common? What are the main root causes? What is the relation between bugs and root causes? How to mitigate these bugs? We present a comprehensive study of 5,068 Stack Overflow posts, 1,800 bug fix commits from GitHub repositories, and several GitHub issues of the most used libraries to understand bugs in R and Python. Our key findings include: while both R and Python have bugs due to inexperience with data analysis, Python see significantly larger data preprocessing bugs compared to R. Developers experience significantly more data flow bugs in R because intermediate results are often implicit. We also found changes and bugs in packages and libraries cause more bugs in R compared to Python while package or library misselection and conflicts cause more bugs in Python than R. While R has a slightly higher readability barrier for data analysts, the statistical power of R leads to a less number of bad performance bugs. In terms of data visualization, R packages have significantly more bugs than Python libraries. We also identified a strong correlation between comparable packages in R and Python despite their linguistic and methodological differences. Lastly, we contribute a large dataset of manually verified R and Python bugs.

The spread of online misinformation on social media is increasingly perceived as a problem for societal cohesion and democracy. The role of political leaders in this process has attracted less research attention, even though politicians who "speak their mind" are perceived by segments of the public as authentic and honest even if their statements are unsupported by evidence. Analyzing communications by members of the U.S. Congress on Twitter between 2011 and 2022, we show that politicians' conception of honesty has undergone a distinct shift, with authentic belief-speaking that may be decoupled from evidence becoming more prominent and more differentiated from explicitly evidence-based truth seeking. We show that for Republicans - but not Democrats - an increase of belief-speaking of 10% is associated with a decrease of 12.8 points of quality (NewsGuard scoring system) in the sources shared in a tweet. Conversely, an increase in truth-seeking language is associated with an increase in quality of sources for both parties. The results support the hypothesis that the current dissemination of misinformation in political discourse is in part driven by an alternative understanding of truth and honesty that emphasizes invocation of subjective belief at the expense of reliance on evidence.

Random graph models are playing an increasingly important role in science and industry, and finds their applications in a variety of fields ranging from social and traffic networks, to recommendation systems and molecular genetics. In this paper, we perform an in-depth analysis of the random Kronecker graph model proposed in \cite{leskovec2010kronecker}, when the number of graph vertices $N$ is large. Built upon recent advances in random matrix theory, we show, in the dense regime, that the random Kronecker graph adjacency matrix follows approximately a signal-plus-noise model, with a small-rank (of order at most $\log N$) signal matrix that is linear in the graph parameters and a random noise matrix having a quarter-circle-form singular value distribution. This observation allows us to propose a ``denoise-and-solve'' meta algorithm to approximately infer the graph parameters, with reduced computational complexity and (asymptotic) performance guarantee. Numerical experiments of graph inference and graph classification on both synthetic and realistic graphs are provided to support the advantageous performance of the proposed approach.

As generative AI becomes more prevalent, it is important to study how human users interact with such models. In this work, we investigate how people use text-to-image models to generate desired target images. To study this interaction, we created ArtWhisperer, an online game where users are given a target image and are tasked with iteratively finding a prompt that creates a similar-looking image as the target. Through this game, we recorded over 50,000 human-AI interactions; each interaction corresponds to one text prompt created by a user and the corresponding generated image. The majority of these are repeated interactions where a user iterates to find the best prompt for their target image, making this a unique sequential dataset for studying human-AI collaborations. In an initial analysis of this dataset, we identify several characteristics of prompt interactions and user strategies. People submit diverse prompts and are able to discover a variety of text descriptions that generate similar images. Interestingly, prompt diversity does not decrease as users find better prompts. We further propose to a new metric the study the steerability of AI using our dataset. We define steerability as the expected number of interactions required to adequately complete a task. We estimate this value by fitting a Markov chain for each target task and calculating the expected time to reach an adequate score in the Markov chain. We quantify and compare AI steerability across different types of target images and two different models, finding that images of cities and natural world images are more steerable than artistic and fantasy images. These findings provide insights into human-AI interaction behavior, present a concrete method of assessing AI steerability, and demonstrate the general utility of the ArtWhisperer dataset.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司