亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mediation is often treated as an extension of negotiation, without taking into account the unique role that norms and facts play in legal mediation. Additionally, current approaches for updating argument acceptability in response to changing variables frequently require the introduction of new arguments or the removal of existing ones, which can be inefficient and cumbersome in decision-making processes within legal disputes. In this paper, our contribution is two-fold. First, we introduce a QuAM (Quantitative Argumentation Mediate) framework, which integrates the parties' knowledge and the mediator's knowledge, including facts and legal norms, when determining the acceptability of a mediation goal. Second, we develop a new formalism to model the relationship between the acceptability of a goal argument and the values assigned to a variable associated with the argument. We use a real-world legal mediation as a running example to illustrate our approach.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

The balanced incomplete block design (BIBD) problem is a difficult combinatorial problem with a large number of symmetries, which add complexity to its resolution. In this paper, we propose a dual (integer) problem representation that serves as an alternative to the classical binary formulation of the problem. We attack this problem incrementally: firstly, we propose basic algorithms (i.e. local search techniques and genetic algorithms) intended to work separately on the two different search spaces (i.e. binary and integer); secondly, we propose two hybrid schemes: an integrative approach (i.e. a memetic algorithm) and a collaborative model in which the previous methods work in parallel, occasionally exchanging information. Three distinct two-dimensional structures are proposed as communication topology among the algorithms involved in the collaborative model, as well as a number of migration and acceptance criteria for sending and receiving data. An empirical analysis comparing a large number of instances of our schemes (with algorithms possibly working on different search spaces and with/without symmetry breaking methods) shows that some of these algorithms can be considered the state of the art of the metaheuristic methods applied to finding BIBDs. Moreover, our cooperative proposal is a general scheme from which distinct algorithmic variants can be instantiated to handle symmetrical optimisation problems. For this reason, we have also analysed its key parameters, thereby providing general guidelines for the design of efficient/robust cooperative algorithms devised from our proposal.

The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption model, in which at most a fraction $f_n$ of parties can be corrupted by the adversary. However, due to the infamous Sybil attack, nominal models are not sufficient to express the trust assumptions in open (i.e., permissionless) settings. Instead, permissionless systems typically operate in a weighted model, where each participant is associated with a weight and the adversary can corrupt a set of parties holding at most a fraction $f_w$ of the total weight. In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal model into the weighted model. To this end, we formalize and solve three novel optimization problems, which we collectively call the weight reduction problems, that allow us to map large real weights into small integer weights while preserving the properties necessary for the correctness of the protocols. In all cases, we manage to keep the sum of the integer weights to be at most linear in the number of parties, resulting in extremely efficient protocols for the weighted model. Moreover, we demonstrate that, on weight distributions that emerge in practice, the sum of the integer weights tends to be far from the theoretical worst case and, sometimes, even smaller than the number of participants. While, for some protocols, our transformation requires an arbitrarily small reduction in resilience (i.e., $f_w = f_n - \epsilon$), surprisingly, for many important problems, we manage to obtain weighted solutions with the same resilience ($f_w = f_n$) as nominal ones. Notable examples include erasure-coded distributed storage and broadcast protocols, verifiable secret sharing, and asynchronous consensus.

If an algorithm is to be counted as a practically working solution to a decision problem, then the algorithm must must verifiable in some constructed and ``trusted'' theory such as PA or ZF. In this paper, a class of decision problems related to inconsistency proofs for a general class of formal theories is used to demonstrate that under this constructibility restriction, there are plausible arguments for the existence of decision problems which can be proved formally to be in NP, and for which there exists an explicitly constructible algorithm recognizing correct solutions in polynomial time, but for which there exists no explicitly constructible, verifiable solution algorithm. While these arguments do not solve the P versus NP problem in the classical sense of supplying a proof one way or the other in a ``trusted'' formal theory, arguably they resolve a constructive version of it.

We consider the nonparametric regression problem when the covariates are located on an unknown smooth compact submanifold of a Euclidean space. Under defining a random geometric graph structure over the covariates we analyze the asymptotic frequentist behaviour of the posterior distribution arising from Bayesian priors designed through random basis expansion in the graph Laplacian eigenbasis. Under Holder smoothness assumption on the regression function and the density of the covariates over the submanifold, we prove that the posterior contraction rates of such methods are minimax optimal (up to logarithmic factors) for any positive smoothness index.

We propose a tamed-adaptive Milstein scheme for stochastic differential equations in which the first-order derivatives of the coefficients are locally H\"older continuous of order $\alpha$. We show that the scheme converges in the $L_2$-norm with a rate of $(1+\alpha)/2$ over both finite intervals $[0, T]$ and the infinite interval $(0, +\infty)$, under certain growth conditions on the coefficients.

Aperiodic autocorrelation is an important indicator of performance of sequences used in communications, remote sensing, and scientific instrumentation. Knowing a sequence's autocorrelation function, which reports the autocorrelation at every possible translation, is equivalent to knowing the magnitude of the sequence's Fourier transform. The phase problem is the difficulty in resolving this lack of phase information. We say that two sequences are equicorrelational to mean that they have the same aperiodic autocorrelation function. Sequences used in technological applications often have restrictions on their terms: they are not arbitrary complex numbers, but come from a more restricted alphabet. For example, binary sequences involve terms equal to only $+1$ and $-1$. We investigate the necessary and sufficient conditions for two sequences to be equicorrelational, where we take their alphabet into consideration. There are trivial forms of equicorrelationality arising from modifications that predictably preserve the autocorrelation, for example, negating a binary sequence or reversing the order of its terms. By a search of binary sequences up to length $44$, we find that nontrivial equicorrelationality among binary sequences does occur, but is rare. An integer $n$ is said to be equivocal when there are binary sequences of length $n$ that are nontrivially equicorrelational; otherwise $n$ is unequivocal. For $n \leq 44$, we found that the unequivocal lengths are $1$--$8$, $10$, $11$, $13$, $14$, $19$, $22$, $23$, $26$, $29$, $37$, and $38$. We pose open questions about the finitude of unequivocal numbers and the probability of nontrivial equicorrelationality occurring among binary sequences.

We show that confidence intervals in a variance component model, with asymptotically correct uniform coverage probability, can be obtained by inverting certain test-statistics based on the score for the restricted likelihood. The results apply in settings where the variance is near or at the boundary of the parameter set. Simulations indicate the proposed test-statistics are approximately pivotal and lead to confidence intervals with near-nominal coverage even in small samples. We illustrate our methods' application in spatially-resolved transcriptomics where we compute approximately 15,000 confidence intervals, used for gene ranking, in less than 4 minutes. In the settings we consider, the proposed method is between two and 28,000 times faster than popular alternatives, depending on how many confidence intervals are computed.

Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unmixing transformation based on the observed data only. The current methods for spatio-temporal blind source separation are restricted to linear unmixing, and nonlinear variants have not been implemented. In this paper, we extend identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.

Split conformal prediction techniques are applied to regression problems with circular responses by introducing a suitable conformity score, leading to prediction sets with adaptive arc length and finite-sample coverage guarantees for any circular predictive model under exchangeable data. Leveraging the high performance of existing predictive models designed for linear responses, we analyze a general projection procedure that converts any linear response regression model into one suitable for circular responses. When random forests serve as basis models in this projection procedure, we harness the out-of-bag dynamics to eliminate the necessity for a separate calibration sample in the construction of prediction sets. For synthetic and real datasets the resulting projected random forests model produces more efficient out-of-bag conformal prediction sets, with shorter median arc length, when compared to the split conformal prediction sets generated by two existing alternative models.

Many economic panel and dynamic models, such as rational behavior and Euler equations, imply that the parameters of interest are identified by conditional moment restrictions. We introduce a novel inference method without any prior information about which conditioning instruments are weak or irrelevant. Building on Bierens (1990), we propose penalized maximum statistics and combine bootstrap inference with model selection. Our method optimizes asymptotic power by solving a data-dependent max-min problem for tuning parameter selection. Extensive Monte Carlo experiments, based on an empirical example, demonstrate the extent to which our inference procedure is superior to those available in the literature.

北京阿比特科技有限公司