亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for large scale sparse view scenes, such as ETH3D. Density-based approaches tend to be under-constrained, while surface-based approaches tend to miss details. In this paper, we take a density-based approach, sampling patches instead of individual rays to better incorporate monocular depth and normal estimates and patch-based photometric consistency constraints between training views and sampled virtual views. Loosely constraining densities based on estimated depth aligned to sparse points further improves geometric accuracy. While maintaining similar view synthesis quality, our approach significantly improves geometric accuracy on the ETH3D benchmark, e.g. increasing the F1@2cm score by 4x-8x compared to other regularized density-based approaches, with much lower training and inference time than other approaches.

相關內容

Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.

Upper limb disability due to neurological disorders or other factors restricts computer interaction for affected individuals using a generic optical mouse. This work reports the findings of a comparative evaluation of Auxilio, a sensor-based wireless head-mounted Assistive Mouse Controller (AMC), that facilitates computer interaction for such individuals. Combining commercially available, low-cost motion and infrared sensors, Auxilio utilizes head movements and cheek muscle twitches for mouse control. Its performance in pointing tasks with subjects without motor impairments has been juxtaposed against a commercially available and patented vision-based head-tracking AMC developed for similar stakeholders. Furthermore, our study evaluates the usability of Auxilio using the System Usability Scale, supplemented by a qualitative analysis of participant interview transcripts to identify the strengths and weaknesses of both AMCs. Experimental results demonstrate the feasibility and effectiveness of Auxilio, and we summarize our key findings into design guidelines for the development of similar future AMCs.

With the rapid advancement of large language models (LLMs), recent years have witnessed many promising studies on leveraging LLM-based agents to simulate human social behavior. While prior work has demonstrated significant potential across various domains, much of it has focused on specific scenarios involving a limited number of agents and has lacked the ability to adapt when errors occur during simulation. To overcome these limitations, we propose a novel LLM-agent-based simulation platform called \textit{GenSim}, which: (1) \textbf{Abstracts a set of general functions} to simplify the simulation of customized social scenarios; (2) \textbf{Supports one hundred thousand agents} to better simulate large-scale populations in real-world contexts; (3) \textbf{Incorporates error-correction mechanisms} to ensure more reliable and long-term simulations. To evaluate our platform, we assess both the efficiency of large-scale agent simulations and the effectiveness of the error-correction mechanisms. To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform based on LLM agents, promising to further advance the field of social science.

As the scale of training corpora for large language models (LLMs) grows, model developers become increasingly reluctant to disclose details on their data. This lack of transparency poses challenges to scientific evaluation and ethical deployment. Recently, pretraining data detection approaches, which infer whether a given text was part of an LLM's training data through black-box access, have been explored. The Min-K\% Prob method, which has achieved state-of-the-art results, assumes that a non-training example tends to contain a few outlier words with low token probabilities. However, the effectiveness may be limited as it tends to misclassify non-training texts that contain many common words with high probabilities predicted by LLMs. To address this issue, we introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection. We compute the cross-entropy (i.e., the divergence) between the token probability distribution and the token frequency distribution to derive a detection score. We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text. Experimental results on English-language benchmarks and PatentMIA demonstrate that our proposed method significantly outperforms existing methods. Our code and PatentMIA benchmark are available at \url{//github.com/zhang-wei-chao/DC-PDD}.

Existing stochastic selection strategies for parent selection in generational GA help build genetic diversity and sustain exploration; however, it ignores the possibility of exploiting knowledge gained by the process to make informed decisions for parent selection, which can often lead to an inefficient search for large, challenging optimization problems. This work proposes a deterministic parent selection strategy for recombination in a generational GA setting called Upper Bound-based Parent Selection (UBS) to solve NP-hard combinatorial optimization problems. Specifically, as part of the UBS strategy, we formulate the parent selection problem using the MAB framework and a modified UCB1 algorithm to manage exploration and exploitation. Further, we provided a unique similarity-based approach for transferring knowledge of the search progress between generations to accelerate the search. To demonstrate the effectiveness of the proposed UBS strategy in comparison to traditional stochastic selection strategies, we conduct experimental studies on two NP-hard combinatorial optimization problems: team orienteering and quadratic assignment. Specifically, we first perform a characterization study to determine the potential of UBS and the best configuration for all the selection strategies involved. Next, we run experiments using these best configurations as part of the comparison study. The results from the characterization studies reveal that UBS, in most cases, favors larger variations among the population between generations. Next, the comparison studies reveal that UBS can effectively search for high-quality solutions faster than traditional stochastic selection strategies on challenging NP-hard combinatorial optimization problems under given experimental conditions.

The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.

Augmenting language models with image inputs may enable more effective jailbreak attacks through continuous optimization, unlike text inputs that require discrete optimization. However, new multimodal fusion models tokenize all input modalities using non-differentiable functions, which hinders straightforward attacks. In this work, we introduce the notion of a tokenizer shortcut that approximates tokenization with a continuous function and enables continuous optimization. We use tokenizer shortcuts to create the first end-to-end gradient image attacks against multimodal fusion models. We evaluate our attacks on Chameleon models and obtain jailbreak images that elicit harmful information for 72.5% of prompts. Jailbreak images outperform text jailbreaks optimized with the same objective and require 3x lower compute budget to optimize 50x more input tokens. Finally, we find that representation engineering defenses, like Circuit Breakers, trained only on text attacks can effectively transfer to adversarial image inputs.

The progress in generative models, particularly Generative Adversarial Networks (GANs), opened new possibilities for image generation but raised concerns about potential malicious uses, especially in sensitive areas like medical imaging. This study introduces MITS-GAN, a novel approach to prevent tampering in medical images, with a specific focus on CT scans. The approach disrupts the output of the attacker's CT-GAN architecture by introducing finely tuned perturbations that are imperceptible to the human eye. Specifically, the proposed approach involves the introduction of appropriate Gaussian noise to the input as a protective measure against various attacks. Our method aims to enhance tamper resistance, comparing favorably to existing techniques. Experimental results on a CT scan demonstrate MITS-GAN's superior performance, emphasizing its ability to generate tamper-resistant images with negligible artifacts. As image tampering in medical domains poses life-threatening risks, our proactive approach contributes to the responsible and ethical use of generative models. This work provides a foundation for future research in countering cyber threats in medical imaging. Models and codes are publicly available on //iplab.dmi.unict.it/MITS-GAN-2024/.

Recently, when dealing with high-resolution images, dominant LMMs usually divide them into multiple local images and one global image, which will lead to a large number of visual tokens. In this work, we introduce AVG-LLaVA, an LMM that can adaptively select the appropriate visual granularity based on the input image and instruction. This approach not only reduces the number of visual tokens and speeds up inference, but also improves the overall model performance. Specifically, we introduce the following modules based on LLaVA-NeXT: (a) a visual granularity scaler that includes multiple pooling layers to obtain visual tokens with different granularities; (b) a visual granularity router, which includes a Transformer layer, an MLP layer, and a voter layer, used to select the appropriate visual granularity based on the image and instruction. Furthermore, we propose RGLF, a novel training paradigm that aims at aligning the granularity predicted by the router with the preferences of the LMM, without the need for additional manually annotated data. Extensive experiments and analysis show that AVG-LLaVA achieves superior performance across 11 benchmarks, as well as significantly reduces the number of visual tokens and speeds up inference (e.g., an 85.3% reduction in visual tokens and a 2.53$\times$ increase in inference speed on the AI2D benchmark).

Optimal trajectory design is computationally expensive for nonlinear and high-dimensional dynamical systems. The challenge arises from the non-convex nature of the optimization problem with multiple local optima, which usually requires a global search. Traditional numerical solvers struggle to find diverse solutions efficiently without appropriate initial guesses. In this paper, we introduce DiffuSolve, a general diffusion model-based solver for non-convex trajectory optimization. An expressive diffusion model is trained on pre-collected locally optimal solutions and efficiently samples initial guesses, which then warm-starts numerical solvers to fine-tune the feasibility and optimality. We also present DiffuSolve+, a novel constrained diffusion model with an additional loss in training that further reduces the problem constraint violations of diffusion samples. Experimental evaluations on three tasks verify the improved robustness, diversity, and a 2$\times$ to 11$\times$ increase in computational efficiency with our proposed method, which generalizes well to trajectory optimization problems of varying challenges.

北京阿比特科技有限公司