亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a given function $F$ from $\mathbb F_{p^n}$ to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to $F$ is a very important and interesting problem. For example, K\"olsch \cite{KOL21} showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function $F(x)=x^{2^i+1}$ and $F(x)=x^3+{\rm Tr}(x^9)$ over $\mathbb F_{2^n}$, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) \cite{BCP06, BCL09FFTA} found functions which are CCZ-equivalent but EA-inequivalent to $F$. In this paper, when a given function $F$ has a component function which has a linear structure, we present functions which are CCZ-equivalent to $F$, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to $F$. As a consequence, for every quadratic function $F$ on $\mathbb F_{2^n}$ ($n\geq 4$) with nonlinearity $>0$ and differential uniformity $\leq 2^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$. Also for every non-planar quadratic function on $\mathbb F_{p^n}$ $(p>2, n\geq 4)$ with $|\mathcal W_F|\leq p^{n-1}$ and differential uniformity $\leq p^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$.

相關內容

Smooth Csisz\'ar $f$-divergences can be expressed as integrals over so-called hockey stick divergences. This motivates a natural quantum generalization in terms of quantum Hockey stick divergences, which we explore here. Using this recipe, the Kullback-Leibler divergence generalises to the Umegaki relative entropy, in the integral form recently found by Frenkel. We find that the R\'enyi divergences defined via our new quantum $f$-divergences are not additive in general, but that their regularisations surprisingly yield the Petz R\'enyi divergence for $\alpha < 1$ and the sandwiched R\'enyi divergence for $\alpha > 1$, unifying these two important families of quantum R\'enyi divergences. Moreover, we find that the contraction coefficients for the new quantum $f$ divergences collapse for all $f$ that are operator convex, mimicking the classical behaviour and resolving some long-standing conjectures by Lesniewski and Ruskai. We derive various inequalities, including new reverse Pinsker inequalites with applications in differential privacy and also explore various other applications of the new divergences.

In this paper, we establish anti-concentration inequalities for additive noise mechanisms which achieve $f$-differential privacy ($f$-DP), a notion of privacy phrased in terms of a tradeoff function (a.k.a. ROC curve) $f$ which limits the ability of an adversary to determine which individuals were in the database. We show that canonical noise distributions (CNDs), proposed by Awan and Vadhan (2023), match the anti-concentration bounds at half-integer values, indicating that their tail behavior is near-optimal. We also show that all CNDs are sub-exponential, regardless of the $f$-DP guarantee. In the case of log-concave CNDs, we show that they are the stochastically smallest noise compared to any other noise distributions with the same privacy guarantee. In terms of integer-valued noise, we propose a new notion of discrete CND and prove that a discrete CND always exists, can be constructed by rounding a continuous CND, and that the discrete CND is unique when designed for a statistic with sensitivity 1. We further show that the discrete CND at sensitivity 1 is stochastically smallest compared to other integer-valued noises. Our theoretical results shed light on the different types of privacy guarantees possible in the $f$-DP framework and can be incorporated in more complex mechanisms to optimize performance.

$\newcommand{\Max}{\mathrm{Max4PC}}$ The Four point condition (4PC henceforth) is a well known condition characterising distances in trees $T$. Let $w,x,y,z$ be four vertices in $T$ and let $d_{x,y}$ denote the distance between vertices $x,y$ in $T$. The 4PC condition says that among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$ the maximum value equals the second maximum value. We define an $\binom{n}{2} \times \binom{n}{2}$ sized matrix $\Max_T$ from a tree $T$ where the rows and columns are indexed by size-2 subsets. The entry of $\Max_T$ corresponding to the row indexed by $\{w,x\}$ and column $\{y,z\}$ is the maximum value among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$. In this work, we determine basic properties of this matrix like rank, give an algorithm that outputs a family of bases, and find the determinant of $\Max_T$ when restricted to our basis. We further determine the inertia and the Smith Normal Form (SNF) of $\Max_T$.

In this paper, we are interested in some problems related to chromatic number and clique number for the class of $(P_5,K_5-e)$-free graphs, and prove the following. $(a)$ If $G$ is a connected ($P_5,K_5-e$)-free graph with $\omega(G)\geq 7$, then either $G$ is the complement of a bipartite graph or $G$ has a clique cut-set. Moreover, there is a connected ($P_5,K_5-e$)-free imperfect graph $H$ with $\omega(H)=6$ and has no clique cut-set. This strengthens a result of Malyshev and Lobanova [Disc. Appl. Math. 219 (2017) 158--166]. $(b)$ If $G$ is a ($P_5,K_5-e$)-free graph with $\omega(G)\geq 4$, then $\chi(G)\leq \max\{7, \omega(G)\}$. Moreover, the bound is tight when $\omega(G)\notin \{4,5,6\}$. This result together with known results partially answers a question of Ju and Huang [arXiv:2303.18003 [math.CO] 2023], and also improves a result of Xu [Manuscript 2022]. While the "Chromatic Number Problem" is known to be $NP$-hard for the class of $P_5$-free graphs, our results together with some known results imply that the "Chromatic Number Problem" can be solved in polynomial time for the class of ($P_5,K_5-e$)-free graphs which may be independent interest.

Algebraic Multigrid (AMG) is one of the most used iterative algorithms for solving large sparse linear equations $Ax=b$. In AMG, the coarse grid is a key component that affects the efficiency of the algorithm, the construction of which relies on the strong threshold parameter $\theta$. This parameter is generally chosen empirically, with a default value in many current AMG solvers of 0.25 for 2D problems and 0.5 for 3D problems. However, for many practical problems, the quality of the coarse grid and the efficiency of the AMG algorithm are sensitive to $\theta$; the default value is rarely optimal, and sometimes is far from it. Therefore, how to choose a better $\theta$ is an important question. In this paper, we propose a deep learning based auto-tuning method, AutoAMG($\theta$) for multiscale sparse linear equations, which are widely used in practical problems. The method uses Graph Neural Networks (GNNs) to extract matrix features, and a Multilayer Perceptron (MLP) to build the mapping between matrix features and the optimal $\theta$, which can adaptively output $\theta$ values for different matrices. Numerical experiments show that AutoAMG($\theta$) can achieve significant speedup compared to the default $\theta$ value.

Stencil composition uses the idea of function composition, wherein two stencils with arbitrary orders of derivative are composed to obtain a stencil with a derivative order equal to sum of the orders of the composing stencils. In this paper, we show how stencil composition can be applied to form finite difference stencils in order to numerically solve partial differential equations (PDEs). We present various properties of stencil composition and investigate the relationship between the order of accuracy of the composed stencil and that of the composing stencils. We also present comparisons between the stability restrictions of composed higher-order PDEs to their compact versions and numerical experiments wherein we verify the order of accuracy by convergence tests. To demonstrate an application to PDEs, a boundary value problem involving the two-dimensional biharmonic equation is numerically solved using stencil composition and the order of accuracy is verified by performing a convergence test. The method is then applied to the Cahn-Hilliard phase-field model. In addition to sample results in 2D and 3D for this benchmark problem, the scalability, spectral properties, and sparsity is explored.

In this work we construct novel $H(\mathrm{sym} \mathrm{Curl})$-conforming finite elements for the recently introduced relaxed micromorphic sequence, which can be considered as the completion of the $\mathrm{div} \mathrm{Div}$-sequence with respect to the $H(\mathrm{sym} \mathrm{Curl})$-space. The elements respect $H(\mathrm{Curl})$-regularity and their lowest order versions converge optimally for $[H(\mathrm{sym} \mathrm{Curl}) \setminus H(\mathrm{Curl})]$-fields. This work introduces a detailed construction, proofs of linear independence and conformity of the basis, and numerical examples. Further, we demonstrate an application to the computation of metamaterials with the relaxed micromorphic model.

We consider the problem of estimating the trace of a matrix function $f(A)$. In certain situations, in particular if $f(A)$ cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from [E. Aune, D. P. Simpson, J. Eidsvik, Parameter estimation in high dimensional Gaussian distributions, Stat. Comput., 24, pp. 247--263, 2014], we also characterize situations in which using just one stochastic vector is always -- not only in expectation -- better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.

This paper presents a novel approach to the construction of the lowest order $H(\mathrm{curl})$ and $H(\mathrm{div})$ exponentially-fitted finite element spaces ${\mathcal{S}_{1^-}^{k}}~(k=1,2)$ on 3D simplicial mesh for corresponding convection-diffusion problems. It is noteworthy that this method not only facilitates the construction of the functions themselves but also provides corresponding discrete fluxes simultaneously. Utilizing this approach, we successfully establish a discrete convection-diffusion complex and employ a specialized weighted interpolation to establish a bridge between the continuous complex and the discrete complex, resulting in a coherent framework. Furthermore, we demonstrate the commutativity of the framework when the convection field is locally constant, along with the exactness of the discrete convection-diffusion complex. Consequently, these types of spaces can be directly employed to devise the corresponding discrete scheme through a Petrov-Galerkin method.

Given samples of a real or complex-valued function on a set of distinct nodes, the traditional linear Chebyshev approximation is to compute the best minimax approximation on a prescribed linear functional space. Lawson's iteration is a classical and well-known method for that task. However, Lawson's iteration converges linearly and in many cases, the convergence is very slow. In this paper, by the duality theory of linear programming, we first provide an elementary and self-contained proof for the well-known Alternation Theorem in the real case. Also, relying upon the Lagrange duality, we further establish an $L_q$-weighted dual programming for the linear Chebyshev approximation. In this framework, we revisit the convergence of Lawson's iteration, and moreover, propose a Newton type iteration, the interior-point method, to solve the $L_2$-weighted dual programming. Numerical experiments are reported to demonstrate its fast convergence and its capability in finding the reference points that characterize the unique minimax approximation.

北京阿比特科技有限公司