In this paper, we consider a more general four-terminal memoryless relay-eavesdropper channel with state information (REC-SI) and derive an achievable perfect secrecy rate for it. We suppose that the state information is non-causally available at the transmitter and relay only. The transmitter wishes to establish a secure communication with the legitimate receiver by the help of a relay where a confidential message will be kept secret from a passive eavesdropper. We consider active cooperation between the relay and transmitter. The relay helps the transmitter by relaying the message using decode-and-forward (DF) scheme. The proposed model is a generalization of some existing models and the derived achievable perfect secrecy rate is compared to the special cases. The results are also validated numerically for the additive white Gaussian noise (AWGN) channel.
The diversity-multiplexing tradeoff (DMT) provides a fundamental performance metric for different multiple-input multiple-output (MIMO) schemes in wireless communications. In this paper, we explore the block fading optical wireless communication (OWC) channels and characterize the DMT in the presence of both optical peak- and average-power constraints. Three different fading distributions are considered, which reflect different channel conditions. In each channel condition, we obtain the optimal DMT when the block length is sufficiently large, and we also derive the lower and upper bounds of the DMT curve when the block length is small. These results are dramatically different from the existing DMT results in radio-frequency (RF) channels. These differences may be due to the fact that the optical input signal is real and bounded, while its RF counterpart is usually complex and unbounded.
This letter studies the average mutual information (AMI) of keyhole multiple-input multiple-output (MIMO) systems having finite input signals. At first, the AMI of single-stream transmission is investigated under two cases where the state information at the transmitter (CSIT) is available or not. Then, the derived results are further extended to the case of multi-stream transmission. For the sake of providing more system insights, asymptotic analyses are performed in the regime of high signal-to-noise ratio (SNR), which suggests that the high-SNR AMI converges to some constant with its rate of convergence determined by the diversity order. All the results are validated by numerical simulations and are in excellent agreement.
The secrecy performance of realistic wireless multicast scenarios can be significantly deteriorated by the simultaneous occurrence of multipath and shadowing. To resolve this security threat, in this work an opportunistic relaying-based dual-hop wireless multicast framework is proposed in which the source dispatches confidential information to a bunch of receivers via intermediate relays under the wiretapping attempts of multiple eavesdroppers. Two scenarios, i.e. non-line of sight (NLOS) and line of sight (LOS) communications along with the multiplicative and LOS shadowing are considered where the first scenario assumes eta-mu and eta-mu/inverse Gamma (IG) composite fading channels and the latter one follows kappa-mu and kappa-mu/IG composite fading channels as the source to relay and relay to receiver's as well as eavesdropper's links, respectively. Secrecy analysis is accomplished by deriving closed-form expressions of three familiar secrecy measures i.e. secure outage probability for multicasting, probability of non-zero secrecy multicast capacity, and ergodic secrecy multicast capacity. We further capitalize on those expressions to observe the effects of all system parameters which are again corroborated via Monte-Carlo simulations. Our observations indicate that a secrecy tradeoff between the number of relays and number of receivers, eavesdroppers, and shadowing parameters can be established to maintain the admissible security level by decreasing the detrimental influences of fading, shadowing, the number of multicast receivers and eavesdroppers.
In this paper, we investigate capacities of two types of the multiple-input multiple-output (MIMO) optical intensity channel (OIC) under per-antenna peak- and average-intensity constraints, called the equal-cost constrained OIC (EC-OIC) and the bounded-cost constrained OIC (BC-OIC). The average intensities of input in the EC-OIC are required to be equal to preassigned constants, while in the BC-OIC those intensities are no larger than preassigned constants. We first consider a general vector Gaussian channel under moment constraints and prove that its high-SNR capacity is determined by the maximum differential entropy with some mild conditions. Then three capacity expressions are derived for the rank-one EC-OIC, the rank-one BC-OIC and the EC-OIC of rank being the number of transmit antennas minus one, respectively, based on which we obtain the results that : 1) either a rank-one EC-OIC and a rank-one BC-OIC is equivalent to some SISO OIC with an amplitude constraint and several moment constraints; 2) by asymptotic results on the moment-constrained vector Gaussian channel, both high-SNR asymptotic capacities of the EC-OIC and the BC-OIC of rank being the number of transmit antennas minus one are characterized. Furthermore, we focus on low-SNR capacity slopes for the general MIMO BC-OIC, and prove properties of the optimal intensity allocation, which simplify the involved nonsmooth optimization problem.
With proliferation of fifth generation (5G) new radio (NR) technology, it is expected to meet the requirement of diverse traffic demands. We have designed a coordinated multi-point (CoMP) enhanced flexible multi-numerology (MN) for 5G-NR networks to improve the network performance in terms of throughput and latency. We have proposed a CoMP enhanced joint subcarrier and power allocation (CESP) scheme which aims at maximizing sum rate under the considerations of transmit power limitation and guaranteed quality-of-service (QoS) including throughput and latency restrictions. By employing difference of two concave functions (D.C.) approximation and abstract Lagrangian duality method, we theoretically transform the original non-convex nonlinear problem into a solvable maximization problem. Moreover, the convergence of our proposed CESP algorithm with D.C. approximation is analytically derived with proofs, and is further validated via numerical results. Simulation results demonstrated that our proposed CESP algorithm outperforms the conventional non-CoMP and single numerology mechanisms along with other existing benchmarks in terms of lower latency and higher throughput under the scenarios of uniform and edge users.
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for power-constrained Internet-of-Things (IoT) smart devices, where IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmit energy minimization problem by jointly optimizing time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. On account of the high coupling of optimization variables, the formulated problem is a non-convex optimization problem that is difficult to solve directly. To address the above-mentioned challenging problem, alternating optimization (AO) technique is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is used to solve the non-convex rank-one constraint in solving IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the superiority of the proposed optimization algorithm in decreasing HAP transmit energy compared with other benchmark schemes.
Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a "store-carry and forward" fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts - required to implement the proposed detection strategy - are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.
The physical-layer secret key generation has emerged as a promising solution for establishing cryptographic keys by leveraging reciprocal and time-varying wireless channels. However, existing approaches suffer from low key generation rates and vulnerabilities under various attacks in slowly varying environments. We propose a new physical-layer secret key generation approach with channel obfuscation, which improves the dynamic property of channel parameters based on random filtering and random antenna scheduling. Our approach makes one party obfuscate the channel to allow the legitimate party to obtain similar dynamic channel parameters yet prevents a third party from inferring the obfuscation information. Our approach allows more random bits to be extracted from the obfuscated channel parameters by a joint design of the K-L transform and adaptive quantization. A testbed implementation shows that our approach, compared to the existing ones that we evaluate, performs the best in generating high entropy bits at a fast rate and a high-security level in slowly varying environments. Specifically, our approach can achieve a significantly faster secret bit generation rate at about $67$ bit/pkt, and the key sequences can pass the randomness tests of the NIST test suite.
Cryptographic algorithms rely on the secrecy of their corresponding keys. On embedded systems with standard CMOS chips, where secure permanent memory such as flash is not available as a key storage, the secret key can be derived from Physical Unclonable Functions (PUFs) that make use of minuscule manufacturing variations of, for instance, SRAM cells. Since PUFs are affected by environmental changes, the reliable reproduction of the PUF key requires error correction. For silicon PUFs with binary output, errors occur in the form of bitflips within the PUFs response. Modelling the channel as a Binary Symmetric Channel (BSC) with fixed crossover probability $p$ is only a first-order approximation of the real behavior of the PUF response. We propose a more realistic channel model, refered to as the Varying Binary Symmetric Channel (VBSC), which takes into account that the reliability of different PUF response bits may not be equal. We investigate its channel capacity for various scenarios which differ in the channel state information (CSI) present at encoder and decoder. We compare the capacity results for the VBSC for the different CSI cases with reference to the distribution of the bitflip probability according a work by Maes et al.
Recent research investigates the decode-and-forward (DF) relaying for mixed radio frequency (RF) and terahertz (THz) wireless links with zero-boresight pointing errors. In this letter, we analyze the performance of a fixed-gain amplify-and-forward (AF) relaying for the RF-THz link to interface the access network on the RF technology with wireless THz transmissions. We develop probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end SNR for the relay-assisted system in terms of bivariate Fox's H function considering $\alpha$-$\mu$ fading for the THz system with non-zero boresight pointing errors and $\alpha$-$\kappa$-$\mu$ shadowed ($\alpha$-KMS) fading model for the RF link. Using the derived PDF and CDF, we present exact analytical expressions of the outage probability, average bit-error-rate (BER), and ergodic capacity of the considered system. We also analyze the outage probability and average BER asymptotically for a better insight into the system behavior at high SNR. We use simulations to compare the performance of the AF relaying having a semi-blind gain factor with the recently proposed DF relaying for THz-RF transmissions.