亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a simplified exposition of some pieces of [Gily\'en, Su, Low, and Wiebe, STOC'19, arXiv:1806.01838], which introduced a quantum singular value transformation (QSVT) framework for applying polynomial functions to block-encoded matrices. The QSVT framework has garnered substantial recent interest from the quantum algorithms community, as it was demonstrated by [GSLW19] to encapsulate many existing algorithms naturally phrased as an application of a matrix function. First, we posit that the lifting of quantum singular processing (QSP) to QSVT is better viewed not through Jordan's lemma (as was suggested by [GSLW19]) but as an application of the cosine-sine decomposition, which can be thought of as a more explicit and stronger version of Jordan's lemma. Second, we demonstrate that the constructions of bounded polynomial approximations given in [GSLW19], which use a variety of ad hoc approaches drawing from Fourier analysis, Chebyshev series, and Taylor series, can be unified under the framework of truncation of Chebyshev series, and indeed, can in large part be matched via a bounded variant of a standard meta-theorem from [Trefethen, 2013]. We hope this work finds use to the community as a companion guide for understanding and applying the powerful framework of [GSLW19].

相關內容

In a recently developed variational discretization scheme for second order initial value problems ( J. Comput. Phys. 498, 112652 (2024) ), it was shown that the Noether charge associated with time translation symmetry is exactly preserved in the interior of the simulated domain. The obtained solution also fulfils the naively discretized equations of motions inside the domain, except for the last two grid points. Here we provide an explanation for the deviations at the boundary as stemming from the Lagrange multipliers used to implement initial and connection conditions. We show explicitly that the Noether charge including the boundary corrections is exactly preserved at its continuum value over the whole simulation domain, including the boundary points.

We present a comprehensive analysis of the implications of artificial latency in the Proposer-Builder Separation framework on the Ethereum network. Focusing on the MEV-Boost auction system, we analyze how strategic latency manipulation affects Maximum Extractable Value yields and network integrity. Our findings reveal both increased profitability for node operators and significant systemic challenges, including heightened network inefficiencies and centralization risks. We empirically validates these insights with a pilot that Chorus One has been operating on Ethereum mainnet. We demonstrate the nuanced effects of latency on bid selection and validator dynamics. Ultimately, this research underscores the need for balanced strategies that optimize Maximum Extractable Value capture while preserving the Ethereum network's decentralization ethos.

This paper develops some theory of the matrix Dyson equation (MDE) for correlated linearizations and uses it to solve a problem on asymptotic deterministic equivalent for the test error in random features regression. The theory developed for the correlated MDE includes existence-uniqueness, spectral support bounds, and stability properties of the MDE. This theory is new for constructing deterministic equivalents for pseudoresolvents of a class of correlated linear pencils. In the application, this theory is used to give a deterministic equivalent of the test error in random features ridge regression, in a proportional scaling regime, wherein we have conditioned on both training and test datasets.

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

This manuscript is devoted to investigating the conservation laws of incompressible Navier-Stokes equations(NSEs), written in the energy-momentum-angular momentum conserving(EMAC) formulation, after being linearized by the two-level methods. With appropriate correction steps(e.g., Stoke/Newton corrections), we show that the two-level methods, discretized from EMAC NSEs, could preserve momentum, angular momentum, and asymptotically preserve energy. Error estimates and (asymptotic) conservative properties are analyzed and obtained, and numerical experiments are conducted to validate the theoretical results, mainly confirming that the two-level linearized methods indeed possess the property of (almost) retainability on conservation laws. Moreover, experimental error estimates and optimal convergence rates of two newly defined types of pressure approximation in EMAC NSEs are also obtained.

In this paper we consider the numerical solution of fractional terminal value problems (FDE-TVPs). In particular, the proposed procedure uses a Newton-type iteration which is particularly efficient when coupled with a recently-introduced step-by-step procedure for solving fractional initial value problems (FDE-IVPs), able to produce spectrally accurate solutions of FDE problems. Some numerical tests are reported to make evidence of its effectiveness.

Influenced mixed moving average fields are a versatile modeling class for spatio-temporal data. However, their predictive distribution is not generally known. Under this modeling assumption, we define a novel spatio-temporal embedding and a theory-guided machine learning approach that employs a generalized Bayesian algorithm to make ensemble forecasts. We employ Lipschitz predictors and determine fixed-time and any-time PAC Bayesian bounds in the batch learning setting. Performing causal forecast is a highlight of our methodology as its potential application to data with spatial and temporal short and long-range dependence. We then test the performance of our learning methodology by using linear predictors and data sets simulated from a spatio-temporal Ornstein-Uhlenbeck process.

Forecast combination involves using multiple forecasts to create a single, more accurate prediction. Recently, feature-based forecasting has been employed to either select the most appropriate forecasting models or to optimize the weights of their combination. In this paper, we present a multi-task optimization paradigm that focuses on solving both problems simultaneously and enriches current operational research approaches to forecasting. In essence, it incorporates an additional learning and optimization task into the standard feature-based forecasting approach, focusing on the identification of an optimal set of forecasting methods. During the training phase, an optimization model with linear constraints and quadratic objective function is employed to identify accurate and diverse methods for each time series. Moreover, within the training phase, a neural network is used to learn the behavior of that optimization model. Once training is completed the candidate set of methods is identified using the network. The proposed approach elicits the essential role of diversity in feature-based forecasting and highlights the interplay between model combination and model selection when optimizing forecasting ensembles. Experimental results on a large set of series from the M4 competition dataset show that our proposal enhances point forecast accuracy compared to state-of-the-art methods.

We describe an efficient method for the approximation of functions using radial basis functions (RBFs), and extend this to a solver for boundary value problems on irregular domains. The method is based on RBFs with centers on a regular grid defined on a bounding box, with some of the centers outside the computational domain. The equation is discretized using collocation with oversampling, with collocation points inside the domain only, resulting in a rectangular linear system to be solved in a least squares sense. The goal of this paper is the efficient solution of that rectangular system. We show that the least squares problem splits into a regular part, which can be expedited with the FFT, and a low rank perturbation, which is treated separately with a direct solver. The rank of the perturbation is influenced by the irregular shape of the domain and by the weak enforcement of boundary conditions at points along the boundary. The solver extends the AZ algorithm which was previously proposed for function approximation involving frames and other overcomplete sets. The solver has near optimal log-linear complexity for univariate problems, and loses optimality for higher-dimensional problems but remains faster than a direct solver.

We present a modification to RingCT protocol with stealth addresses that makes it compatible with Delegated Proof of Stake based consensus mechanisms called Delegated RingCT. Our scheme has two building blocks: a customised version of an Integrated Signature and Encryption scheme composed of a public key encryption scheme and two signature schemes (a digital signature and a linkable ring signature); and non-interactive zero knowledge proofs. We give a description of the scheme, security proofs and a prototype implementation whose benchmarking is discussed. Although Delegated RingCT doesn't have the same degree of anonymity as other RingCT constructions, we argue that the benefits that the compatibility with DPoS consensus mechanisms brings constitutes a reasonable trade-off for being able to develop an anonymous decentralised cryptocurrency that is faster and more scalable than existing ones.

北京阿比特科技有限公司