亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

線性模型是統計方法論的基石。統計學、生物統計學、機器學習、數據科學、計量經濟學等學科的高級學生可能比其他任何工具都更應該花時間學習這門學科的細節。

在這本書中,我們對高級線性模型作了簡短而嚴格的處理。它是先進的,在某種意義上,它是一個初級的博士生在統計學或生物統計學會看到的水平。這本書中的材料是任何統計學或生物統計學博士的標準知識。

在嘗試學習這門課程之前,學生將需要相當數量的數學先決條件。首先是多元微積分和線性代數。特別是線性代數,因為線性模型的許多早期部分是線性代數結果在統計背景下的直接應用。此外,一些基于數學的基本證明是遵循證明所必需的。此外,還需要一些回歸模型和數理統計。

//leanpub.com/lm

付費5元查看完整內容

相關內容

數據科學(英語:data science)是一門利用數據學習知識的學科,其目標是通過從數據中提取出有價值的部分來生產數據產品。 它結合了諸多領域中的理論和技術,包括應用數學、統計、模式識別、機器學習、數據可視化、數據倉庫以及高性能計算。 數據科學通過運用各種相關的數據來幫助非專業人士理解問題。

你們已經學過了一些基本的統計學知識。均值、中位數和標準差都很熟悉。你知道調查和實驗,以及相關和簡單回歸的基本概念。你已經學習了概率,誤差范圍,一些假設檢驗和置信區間。你準備好為你的統計工具箱裝載新的工具了嗎?Statistics II For Dummies, 2nd Edition,拾取了Statistics For Dummies, 2nd Edition, (John Wiley & Sons)的右邊,并保持你沿著統計學的想法和技術的道路,以積極的,一步一步的方式。《傻瓜統計II》第二版的重點是尋找更多分析數據的方法。我會一步一步地說明如何使用一些技術,如多元回歸、非線性回歸、單向和雙向方差分析(ANOVA)和卡方檢驗,我還會給你一些使用大數據集的練習,這是現在非常流行的。使用這些新技術,您可以根據手頭的信息估計、調查、關聯和聚集更多的變量,并看到如何將這些工具組合在一起,創建一個關于您的數據的偉大故事(我希望是非虛構的!)。

//www.wiley.com/en-ag/Statistics+II+For+Dummies,+2nd+Edition-p-9781119827399

這本書是為那些已經通過置信區間和假設檢驗完成統計學的基本概念的人設計的(在《傻瓜統計學》第二版中找到),他們已經準備好了通過Stats I的最后部分,或者解決Stats II的問題。不過,我還是會根據需要對Stats進行一些簡要概述,以提醒您所涵蓋的內容,并確保您了解最新情況。對于每一項新技術,您都可以從經驗豐富的數據分析師(真正屬于您的)那里獲得關于何時以及為何使用它的概述,如何知道何時需要它,如何應用它的逐步指導,以及提示和技巧。因為知道何時使用哪種方法是非常重要的,我強調是什么使每一種技術不同,以及結果告訴你什么。您還將看到這些技術在現實生活中的許多應用。

付費5元查看完整內容

組合學是研究有限或可數離散結構的數學分支。組合學的方面包括計算給定種類和大小的結構(枚舉組合學),決定何時可以滿足某些標準,以及構造和分析滿足標準的對象(如在組合設計和矩陣理論中),找到“最大”,“最小”,或“最優”對象(極值組合學和組合優化學),以及在代數背景下研究組合結構,或將代數技術應用于組合問題(代數組合學)。

圖論是對圖的研究,圖是用來建模對象之間的成對關系的數學結構。在這種情況下,“圖”是由“頂點”或“節點”和連接它們的線(稱為邊)組成的。一個圖可以是無向的,這意味著與每條邊關聯的兩個頂點之間沒有區別,或者它的邊可以從一個頂點指向另一個頂點;參見圖表(數學)以獲得更詳細的定義,以及通常被認為是圖表類型的其他變體。圖是離散數學的主要研究對象之一。

這本書讓讀者了解組合學和圖論的經典部分,同時也討論了這一領域的一些最新進展:一方面,提供幫助學生學習基本技術的材料,另一方面,表明一些研究前沿的問題是可以理解的,對有才華和勤奮的本科生來說是容易理解的。

//www.whitman.edu/mathematics/cgt_online/cgt.pdf

付費5元查看完整內容

本書是Coursera統計推理課程的配套教材,是數據科學專業的一部分。然而,如果你不上這門課,這本書基本上是獨立的。這本書的一個有用的組成部分是包括Coursera課程的一系列YouTube視頻。這本書是對統計推斷做介紹。目標受眾是具有數字和計算能力的學生,他們希望將這些技能用于數據科學或統計學。

//github.com/bcaffo/LittleInferenceBook

付費5元查看完整內容

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容

高維概率提供了對隨機向量、隨機矩陣、隨機子空間和用于量化高維不確定性的對象的行為的洞察。借鑒了概率、分析和幾何的思想,它適用于數學、統計學、理論計算機科學、信號處理、優化等領域。它是第一個將高維概率的理論、關鍵工具和現代應用集成起來的。集中不等式是其核心,它涵蓋了Hoeffding和Chernoff等經典不等式和Bernstein等現代發展。然后介紹了基于隨機過程的強大方法,包括Slepian的、Sudakov的和Dudley的不等式,以及基于VC維的泛鏈和界。整本書包含了大量的插圖,包括經典和現代的協方差估計、聚類、網絡、半定規劃、編碼、降維、矩陣補全、機器學習、壓縮感知和稀疏回歸等結果。

這是一本教科書在高維概率與數據科學的應用展望。它是為博士和高級碩士學生和數學,統計,電子工程,計算機科學,計算生物學和相關領域的初級研究人員,誰正在尋求擴大他們的理論方法在現代研究數據科學的知識。

付費5元查看完整內容

這本教科書強調了代數和幾何之間的相互作用,以激發線性代數的研究。矩陣和線性變換被認為是同一枚硬幣的兩面,它們的聯系激發了全書的探究。圍繞著這個界面,作者提供了一個概念上的理解,數學是進一步的理論和應用的核心。繼續學習線性代數的第二門課程,您將會對《高等線性代數與矩陣代數》這本書有更深的了解。

從向量、矩陣和線性變換的介紹開始,這本書的重點是構建這些工具所代表的幾何直觀。線性系統提供了迄今為止看到的思想的強大應用,并導致子空間、線性獨立、基和秩的引入。然后研究集中在矩陣的代數性質,闡明了它們所代表的線性變換的幾何性質。行列式、特征值和特征向量都可以從這種幾何觀點中獲益。在整個過程中,“額外主題”部分以廣泛的思想和應用擴大了核心內容,從線性規劃,到冪迭代和線性遞歸關系。每個部分都有各種層次的練習,包括許多設計用來用電腦程序解決的練習。

這本書是從線性變換和矩陣本身都是有用的對象的角度寫的,但它是兩者之間的聯系,真正打開線性代數的魔法。有時候,當我們想知道一些關于線性變換的東西時,最簡單的方法就是找到一組基然后看對應的矩陣。相反,有許多有趣的矩陣和矩陣運算家族,它們似乎與線性變換無關,但卻可以解釋一些基無關對象的行為。

線性與矩陣代數導論是線性代數的理想入門證明課程。學生被假定已經完成了一到兩門大學水平的數學課程,盡管微積分不是明確的要求。教師將會感激有足夠的機會選擇符合每個教室需求的主題,并通過WeBWorK提供在線作業集。

付費5元查看完整內容

《數據科學設計手冊》提供了實用的見解,突出了分析數據中真正重要的東西,并提供了如何使用這些核心概念的直觀理解。這本書沒有強調任何特定的編程語言或數據分析工具套件,而是專注于重要設計原則的高級討論。這個易于閱讀的文本理想地服務于本科生和早期研究生的需要,開始“數據科學入門”課程。它揭示了這門學科是如何以其獨特的分量和特點,處于統計學、計算機科學和機器學習的交叉領域。在這些和相關領域的從業者會發現這本書完美的自學以及。

《數據科學設計手冊》是數據科學的介紹,重點介紹建立收集、分析和解釋數據的系統所需的技能和原則。作為一門學科,數據科學位于統計學、計算機科學和機器學習的交匯處,但它正在構建自己獨特的分量和特征。

這本書涵蓋了足夠的材料在本科或早期研究生水平的“數據科學入門”課程。在這里可以找到教學這門課程的全套講課幻燈片,以及項目和作業的數據資源,以及在線視頻講座。

付費5元查看完整內容

這本書的書名聽起來有點神秘。如果這本書以一種錯誤的方式呈現了這個主題,人們為什么要讀它呢?書中哪些地方做得特別“不對”?

在回答這些問題之前,讓我先描述一下本文的目標受眾。這本書是“榮譽線性代數”課程的課堂講稿。這應該是高等數學學生的第一門線性代數課程。它的目標是一個學生,雖然還不是非常熟悉抽象推理,但愿意學習更嚴格的數學,在“烹飪書風格”的微積分類型課程。除了作為線性代數的第一門課程,它也應該是第一門向學生介紹嚴格證明、形式定義——簡而言之,現代理論(抽象)數學風格的課程。

目標讀者解釋了基本概念和具體實例的非常具體的混合,它們通常出現在介紹性的線性代數文本中,具有更抽象的定義和高級書籍的典型構造。

//www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf

付費5元查看完整內容

線性代數是計算和數據科學家的基本工具之一。這本書“高級線性代數:基礎到前沿”(ALAFF)是一個替代傳統高級線性代數的計算研究生課程。重點是數值線性代數,研究理論、算法和計算機算法如何相互作用。這些材料通過將文本、視頻、練習和編程交織在一起來保持學習者的參與性。

我們在不同的設置中使用了這些材料。這是我們在德克薩斯大學奧斯汀分校名為“數值分析:線性代數”的課程的主要資源,該課程由計算機科學、數學、統計和數據科學、機械工程以及計算科學、工程和數學研究生課程提供。這門課程也通過UT-Austin計算機科學碩士在線課程提供“高級線性代數計算”。最后,它是edX平臺上名為“高級線性代數:基礎到前沿”的大規模在線開放課程(MOOC)的基礎。我們希望其他人可以將ALAFF材料重新用于其他學習設置,無論是整體還是部分。

為了退怕學習者,我們采取了傳統的主題的數字線性代數課程,并組織成三部分。正交性,求解線性系統,以及代數特征值問題。

  • 第一部分:正交性探討了正交性(包括規范的處理、正交空間、奇異值分解(SVD)和解決線性最小二乘問題)。我們從這些主題開始,因為它們是其他課程的先決知識,學生們經常與高等線性代數并行(甚至在此之前)進行學習。

  • 第二部分:求解線性系統集中在所謂的直接和迭代方法,同時也引入了數值穩定性的概念,它量化和限定了在問題的原始陳述中引入的誤差和/或在計算機算法中發生的舍入如何影響計算的正確性。

  • 第三部分:代數特征值問題,重點是計算矩陣的特征值和特征向量的理論和實踐。這和對角化矩陣是密切相關的。推廣了求解特征值問題的實用算法,使其可以用于奇異值分解的計算。本部分和本課程以在現代計算機上執行矩陣計算時如何實現高性能的討論結束。

付費5元查看完整內容

這個備受期待的第二版包含新的章節和新內容,225個新參考文獻以及全面的R軟件。與上一版保持一致,這本書涉及數據分析和預測建模相關的知識,需要選擇和使用多種工具。本書沒有介紹孤立的技術,而是強調解決問題的策略,這些策略解決了使用實際數據而不是標準教科書示例開發多變量模型時出現的許多問題。它包括用于有效處理缺失數據的插補方法,用于擬合非線性關系并使轉換估計成為建模過程正式形式的方法,用于處理“要分析的變量太多而觀察不到的方法” 以及基于引導程序的強大模型驗證技術。讀者將對預測的準確性以及對連續的預測因素或結果進行分類的危害有敏銳的理解。本書實際處理模型不確定性及其對推理的影響,以實現“安全數據挖掘”。它還提供了許多圖形方法,用于將復雜的回歸模型傳達給非統計人員。

 ![](//cdn.zhuanzhi.ai/vfiles/44b832ebf4caf72fb9d4d8f60dff6f01)

回歸建模策略提供了非平凡數據集的全面案例研究,而不是每種方法的過度簡化說明。這些案例研究使用免費提供的R函數,這些函數使書中所述的多重插補,模型構建,驗證和解釋任務相對容易實現。本書中的大多數方法都適用于所有回歸模型,但是要特別強調使用廣義最小二乘用于縱向數據,二進制邏輯模型,序數響應模型,參數生存回歸模型和Cox半參數生存模型的多元回歸。。新的重點是使用序數回歸對連續因變量進行穩健分析。



如在第一版中,該文本適用于碩士或博士學位。擁有一般概論和統計課程的高水平研究生,并且精通普通的多元回歸和中級代數。該書還將包含有關現代統計建模技術的最新調查和參考書目,可供數據分析人員和統計方法學家參考。本書中使用的示例主要來自生物醫學研究,但是該方法適用于任何有用的預測模型(“分析”),包括經濟學,流行病學,社會學,心理學,工程學和市場營銷。
付費5元查看完整內容
北京阿比特科技有限公司