虛假信息在在線平臺上的傳播對社會構成了嚴重挑戰,亟需采取有效措施進行信息驗證。盡管人工事實核查依然非常重要,但虛假信息的不斷增加需要自動化的方法來應對。大型語言模型(LLMs)為幫助事實核查員提供了有前景的機會,利用LLMs廣泛的知識和強大的推理能力。在這篇綜述論文中,我們探討了生成型LLMs在事實核查領域的應用,展示了已采用的各種方法和用于提示或微調LLMs的技術。通過概述現有方法,這篇綜述旨在提高對LLMs在事實核查中應用的理解,并促進LLMs在這一過程中進一步的發展。
引言 當代數字時代帶來了各種挑戰,其中包括虛假信息的傳播。社交媒體的普及使這個問題更加嚴峻,成為一個嚴重的社會關注點。有效應對虛假信息的策略之一是事實核查(Vlachos 和 Riedel,2014),這主要由事實核查員手動完成。然而,事實核查員的數量有限,而虛假信息的傳播卻在增加(A?meur 等,2023)。因此,有必要通過使用數字工具和大型語言模型(LLMs)來開發自動化的事實核查流程,以協助事實核查員(Nakov 等,2021a)。
LLMs利用大規模數據集,結合數十億參數來模擬語言的細微差別和自然語言的模式。此外,生成型LLMs代表了一種專門用于文本生成的LLMs子集。它們在手動事實核查中的應用顯示出提高效率和準確性的良好前景。本研究首次綜合總結了將生成型LLMs整合到事實核查過程中的各種方法和技術。
現有的綜述已探討了事實核查員的需求和可自動化的任務(Nakov 等,2021a),任務定義、傳統方法或類似BERT的架構(Thorne 和 Vlachos,2018;Zeng 等,2021)。此外,還有幾位作者審查了現有的事實核查數據集(Guo 等,2022)。另一項綜述旨在利用LLMs對抗虛假信息,并探索LLMs帶來的機會和挑戰(Chen 和 Shu,2023b)。然而,這項研究并未詳細探討所使用的方法,這為更深入研究生成型LLMs在事實核查中的作用提供了機會。
我們的主要貢獻是提供生成型LLMs在自動化事實核查中應用的概述。我們概述了70篇相關方法和新穎提示技術的論文,供研究人員深入研究LLMs輔助的信息驗證。我們確定了四個主要任務和各種提出的解決策略。此外,我們討論了未來的挑戰和利用LLMs進行信息驗證的可能方向。
大型語言模型(LLMs)在各個領域展示了卓越的能力,吸引了學術界和工業界的廣泛關注。盡管它們表現出色,但LLMs的巨大規模和計算需求對實際部署帶來了相當大的挑戰,特別是在資源有限的環境中。壓縮語言模型同時保持其精度的努力已成為研究的重點。在各種方法中,知識蒸餾已成為一種有效的技術,可以在不大幅降低性能的情況下提高推理速度。本文從方法、評估和應用三個方面進行了詳細的調查,探討了專門為LLMs量身定制的知識蒸餾技術。具體來說,我們將方法分為白盒KD和黑盒KD,以更好地說明它們的差異。此外,我們還探討了不同蒸餾方法之間的評估任務和蒸餾效果,并提出了未來研究的方向。通過深入理解最新進展和實際應用,這項調查為研究人員提供了寶貴的資源,為該領域的持續進步鋪平了道路。
** 簡介**
大型語言模型(LLMs)[2, 17, 130, 146, 166] 的出現顯著提高了各種生成任務中的文本生成質量,成為人工智能領域一個關鍵且廣受討論的話題。與之前的模型相比,這些模型對未見數據的泛化能力更強。此外,它們還展示了小型模型所不具備的能力,如多步推理[47, 69, 83] 和指令執行[103, 144, 154]。LLMs的成功通常歸因于訓練數據的增加和模型參數數量的增加(例如,具有1750億參數的GPT-3[12])。然而,參數規模的擴展帶來了顯著的缺點,尤其是在高推理成本和大量內存需求方面,使得實際部署變得具有挑戰性。例如,GPT-3需要大約350GB的模型存儲(float16),并且推理至少需要5個每個80GB內存的A100 GPU,這對碳排放的影響顯著。為了解決這些挑戰,模型壓縮[30, 40] 已成為一種可行的解決方案。模型壓縮旨在將大型、資源密集型模型轉化為適合在受限移動設備上存儲的更緊湊版本。這一過程可能涉及優化以減少延遲以實現更快的執行,或在最小延遲和模型性能之間取得平衡。因此,在現實場景中應用這些高容量模型的一個關鍵目標是壓縮它們,減少參數數量,同時保持最大性能。
隨著減少計算資源需求的必要性日益重要,知識蒸餾(Knowledge Distillation, KD)[43] 作為一種有前景的技術出現。KD是一種機器學習方法,專注于通過從大型復雜模型向更小、更高效的模型傳遞知識來壓縮和加速模型。這種技術經常被用來將存儲在大型深度神經網絡模型中的知識濃縮到更小的模型中,從而減少計算資源需求并提高推理速度而不會大幅犧牲性能。從根本上講,知識蒸餾利用大型模型在大量數據集上獲得的廣泛知識來指導較小模型的訓練。這些知識通常包括輸出概率分布、中間層表示和大型模型的損失函數。在訓練過程中,較小的模型不僅要匹配原始數據標簽,還要模仿較大模型的行為。對于像GPT-4[2]這樣只能通過API訪問的高級模型,生成的指令和解釋可以幫助訓練學生模型[54]。隨著知識蒸餾的最新進展,許多研究綜合了各種蒸餾技術的最新進展。具體來說,Gou等[37] 對知識蒸餾進行了廣泛的綜述,涉及六個關鍵方面:知識類別、訓練方案、師生架構、蒸餾算法、性能比較和應用。同樣,Wang等[141] 詳細總結了與視覺任務相關的知識蒸餾技術的研究進展和技術細節。Alkhulaifi等[4] 介紹了一種創新的度量標準,稱為蒸餾度量標準,他們用它來評估不同的知識壓縮方法。此外,Hu等[48] 探討了跨多個蒸餾目標的各種師生架構,提出了不同的知識表示及其相應的優化目標,并系統地概述了師生架構,結合了代表性的學習算法和有效的蒸餾方案。
現有關于知識蒸餾的綜述為模型壓縮奠定了重要基礎并提供了寶貴的見解[13, 51, 64]。然而,LLMs的出現給KD帶來了若干新挑戰:1)大型語言模型設計并非僅用于單一任務如文本生成,而是廣泛應用于各種任務和未見數據,包括新興能力。因此,評估壓縮LLMs的泛化能力需要仔細和全面的評估。2)現有綜述僅是對現有工作的總結,未提供將KD技術應用于壓縮和部署LLMs的具體示例。這種案例研究可以幫助讀者為不同規模的LLMs選擇最佳的KD方案。
為應對這些挑戰,已經開發出各種專為LLMs設計的知識蒸餾算法。本文旨在提供這些方法的全面而有見地的指南。我們的調查的總體分類框架如圖1所示,從方法、評估和應用三個方面審視LLMs的蒸餾算法。為了清楚解釋這些方法,我們將其分為白盒KD和黑盒KD。白盒KD包括兩種不同類型:基于Logits的方法[43],在Logits層面傳遞知識,以及基于Hint的方法[109],通過中間特征傳遞知識。黑盒KD涉及一種基于API的方法,其中僅能訪問教師模型的輸出。此類別通常包括三種方法:上下文學習[52]、鏈式思維[69] 和指令執行[144]。此外,我們同時評估了上述兩種蒸餾算法在魯棒性基準上的有效性[94, 128, 138]。最后,我們討論了不同蒸餾方法之間的關系和應用場景,并提出了未來研究方向。
本文其余部分安排如下:第2節簡要回顧了知識蒸餾方法的定義。接下來,第3節深入探討了LLMs領域的蒸餾和評估方法。第4節展示了應用場景,第5節總結了知識蒸餾的挑戰并探討了未來研究方向。最后,第6節對本文進行了總結。
大語言模型(LLMs)與知識表示學習(KRL)的整合,標志著人工智能領域的重要進展,增強了捕捉和利用復雜知識結構的能力。這種協同作用利用了LLMs的高級語言和語境理解能力,以提升KRL的準確性、適應性和效能,從而擴展其應用和潛力。盡管有越來越多的研究集中在將LLMs嵌入到知識表示領域,但關于這些增強模型基本組件和過程的徹底審查明顯缺乏。我們的綜述通過基于三種不同的Transformer架構對這些模型進行分類,并分析來自各種KRL下游任務的實驗數據,以評估每種方法的優勢和劣勢。最后,我們確定并探討了這一新興但尚未深入探討的領域的潛在未來研究方向,提出了持續進展的路徑。
介紹
大語言模型(LLMs)(例如,BERT [18],LLaMA [59]),代表了一個不斷增長模型大小的方向,這些模型在更大的語料庫上進行預訓練,已經展示出在解決自然語言處理(NLP)任務中的強大能力,包括問答 [99],文本生成 [100] 和文檔理解 [101]。關于模型大小,沒有明確和靜態的閾值。早期的LLMs(例如BERT,RoBERTa)采用了編碼器架構,并展示了在文本表示學習和自然語言理解方面的能力。近年來,更多的關注點轉向了更大的編碼器-解碼器 [102] 或僅解碼器 [103] 架構。隨著模型大小的增加,這些LLMs還展示了推理能力甚至更高級的新興能力 [104],展示出對人工通用智能(AGI)的強大潛力。
這個拐點,隨著LLMs的到來,標志著從顯式知識表示向重新關注顯式知識和參數化知識混合表示的范式轉變。作為顯式知識表示的一種流行方法,知識圖譜(KGs)現在被廣泛研究,用于與基于Transformer的LLMs結合,包括預訓練的掩蔽語言模型(PLMs)如BERT和RoBERTa,以及更近期的生成式LLMs如GPT系列和LLaMA。一些工作利用LLMs來增強知識圖譜表示學習。在這篇綜述中,考慮到三個方向,即基于編碼器的方法、基于編碼器-解碼器的方法和基于解碼器的方法。我們對從顯式知識表示向重新關注顯式知識和參數化知識混合表示的轉變有了更深入的理解。
Cao等人 [22] 和Biswas等人 [40] 討論了知識圖譜表示學習的最新進展,但他們對與大型模型整合相關的方面處理不足。Pan等人 [42] 和Pan等人 [43] 探討了知識圖譜與大型模型的結合,特別是LLM4KG和KG4LLM;然而,他們在表示學習方面的覆蓋有限。因此,目前還沒有專門概述知識圖譜表示學習領域最新發展的綜述文章。
貢獻 本綜述的顯著貢獻總結如下:
組織結構 本綜述的結構如下:
隨著大語言模型(LLM)在各個領域的應用不斷擴大,它們適應數據、任務和用戶偏好的持續變化的能力變得至關重要。使用靜態數據集的傳統訓練方法不足以應對現實世界信息的動態特性。終身學習或持續學習通過使LLM能夠在其運行生命周期內持續學習和適應,整合新知識,同時保留先前學習的信息并防止災難性遺忘來解決這一問題。我們的綜述探討了終身學習的現狀,根據新知識的整合方式將策略分為兩類:內在知識,LLM通過完全或部分訓練將新知識吸收到其參數中;外部知識,通過將新知識作為外部資源(如維基百科或API)引入而不更新模型參數。我們的綜述的主要貢獻包括:(1)引入了一種新穎的分類法,將終身學習的大量文獻劃分為12種情景;(2)識別了所有終身學習情景中的常見技術,并將現有文獻分類到不同的技術組中;(3)強調了在LLM之前時代較少探索的模型擴展和數據選擇等新興技術。資源可在//github.com/qianlima-lab/awesome-lifelong-learningmethods-for-llm找到。
隨著大語言模型(LLM)在各個領域的應用不斷擴大,這些模型適應數據、任務和用戶偏好持續變化的能力變得至關重要。傳統的訓練方法依賴靜態數據集來訓練LLM,越來越無法應對現實世界信息的動態特性。終身學習(也稱為持續學習、增量學習),或LLM在其運行生命周期內持續和自適應學習的能力,解決了這一挑戰,通過整合新知識,同時保留先前學習的信息,從而防止災難性遺忘。圖1提供了終身學習的示意圖。 本綜述深入探討了終身學習的復雜領域,根據新知識的整合方式將策略分為兩大類:內在知識和外部知識。每個類別包含不同的方法,旨在增強LLM在各種情境下的適應性和有效性。圖2展示了LLM終身學習方法的分類。 內在知識類通過完全或部分訓練將新知識吸收到LLM的參數中,包括持續預訓練和持續微調等策略。例如,在工業應用中,常采用持續垂直領域預訓練,公司經常使用金融等領域的特定數據重新訓練其LLM。盡管這提高了特定領域的性能,但也有可能削弱模型的廣泛知識基礎,說明了在專業適應性和通用知識保留之間保持平衡的挑戰。持續微調涵蓋了特定情境的方法,如文本分類、命名實體識別、關系抽取和機器翻譯等,以及任務無關的方法,如指令微調、對齊和知識編輯。此外,在持續對齊中使用了人類反饋的強化學習,以確保LLM遵守人類價值觀,如安全和禮貌,突顯了所謂的“對齊稅”,即過于專注于特定價值觀可能會導致模型的通用能力下降。
外部知識類通過將新知識作為外部資源(如維基百科或API)引入,而不更新模型參數,包括基于檢索和工具的終身學習,利用外部數據源和計算工具來擴展模型的能力。基于檢索的策略,如檢索增強生成,通過提供上下文相關、準確和最新的外部數據庫(如維基百科)信息來增強文本生成,確保模型輸出隨時間保持相關性。同時,工具學習類借鑒人類工具使用的類比,模型學習使用外部計算工具,從而無需直接修改其核心知識庫,拓寬了其問題解決能力。
通過對這些組及其各自類別的詳細檢查,本文旨在強調將終身學習能力整合到LLM中,從而增強其在實際應用中的適應性、可靠性和整體性能。通過解決與終身學習相關的挑戰并探索該領域的創新,本綜述旨在為開發更強大和多功能的LLM做出貢獻,使其能夠在不斷變化的數字環境中蓬勃發展。
本綜述與現有綜述的差異。近年來,終身學習已成為一個越來越受歡迎的研究主題。大量綜述探討了神經網絡的終身學習。大多數現有綜述主要集中在卷積神經網絡(CNN)的終身學習,探討了CNN的各種終身學習情景,包括圖像分類、分割、目標檢測、自動系統、機器人和智慧城市。此外,一些綜述探討了圖神經網絡的終身學習。然而,只有少量文獻關注語言模型的終身學習。Biesialska等是關于自然語言處理(NLP)中終身學習的早期綜述,但他們只關注詞和句子表示、語言建模、問答、文本分類和機器翻譯。Ke等關注終身學習情景,包括情感分類、命名實體識別和摘要。他們還討論了知識轉移和任務間類分離的技術。Zhang等提供了關于將LLM與不斷變化的世界知識對齊的技術的全面回顧,包括持續預訓練、知識編輯和檢索增強生成。Wu等從持續預訓練、持續指令微調和持續對齊三個方面重新審視了終身學習。Shi等從垂直方向(或垂直持續學習)和水平方向(或水平持續學習)兩個方向研究了LLM的終身學習。Jovanovic等回顧了幾種實時學習范式,包括持續學習、元學習、參數高效學習和專家混合學習。雖然最近的綜述收集了終身學習的最新文獻,但它們沒有涵蓋持續文本分類、持續命名實體識別、持續關系抽取和持續機器翻譯等情景,并且對持續對齊、持續知識編輯、基于工具的終身學習和基于檢索的終身學習的討論較少。據我們所知,我們是第一個提供對LLM終身學習方法從12種情景進行徹底和系統檢查的綜述。
本綜述的貢獻。我們的綜述的主要貢獻包括:
-** 常見技術**:我們在所有終身學習情景中識別了常見技術,并將現有文獻分類到每個情景內的各種技術組中。
本綜述的組織結構如下。第二節介紹問題的形成、評價指標、常見技術、基準和數據集。第三節、第四節和第五節檢查了持續預訓練、持續微調和基于外部知識的終身學習的現有技術。第六節討論了LLM終身學習的現有挑戰、當前趨勢和未來方向,并總結了本綜述。
在過去的一年中,多模態大型語言模型(MLLMs)在視覺問答、視覺理解和推理等任務中表現出色。然而,龐大的模型規模和高昂的訓練與推理成本阻礙了MLLMs在學術界和工業界的廣泛應用。因此,研究高效且輕量級的MLLMs具有巨大的潛力,特別是在邊緣計算場景中。在這篇綜述中,我們對當前高效MLLMs的研究現狀進行了全面而系統的回顧。具體來說,我們總結了代表性高效MLLMs的時間線、高效結構和策略的研究現狀以及應用。最后,我們討論了當前高效MLLM研究的局限性和未來有前景的研究方向。更多詳情請參考我們的GitHub倉庫://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey。
大規模預訓練作為人工智能(AI)領域的一種領先方法,使得像大型語言模型和多模態模型這樣的通用模型在許多任務中超越了專門的深度學習模型。大型語言模型(LLM)的卓越能力激發了將它們與其他基于模態的模型結合起來以增強多模態能力的努力。這一概念得到了OpenAI的GPT-4V[1]和Google的Gemini[2]等專有模型顯著成功的進一步支持。因此,多模態大型語言模型(MLLMs)應運而生,包括mPLUG-Owl系列[3, 4]、InternVL[5]、EMU[6]、LLaVA[7]、InstructBLIP[8]、MiniGPT-v2[9]和MiniGPT-4[10]。這些模型通過有效利用每種模態的預訓練知識,繞過了從頭開始訓練的計算成本。MLLMs繼承了LLM的認知能力,展示了許多顯著特性,如強大的語言生成和遷移學習能力。此外,通過與其他基于模態的模型建立強大的表示連接和對齊,MLLMs能夠處理來自多種模態的輸入,顯著拓寬了它們的應用范圍。 MLLMs的成功主要歸因于規模定律:隨著數據、計算能力或模型規模等資源的增加,AI模型的性能會提高。然而,可擴展性伴隨著高資源需求,這阻礙了大型模型的發展和部署。例如,MiniGPT-v2的訓練需要基于NVIDIA A100 GPU計算出的總計超過800個GPU小時[9]。這對主要企業外的研究人員來說是一個巨大的費用負擔。除了訓練之外,推理也是MLLMs資源消耗的主要部分。考慮一個典型場景,模型輸入包括一個尺寸為336 × 336像素的圖像和一個長度為40個tokens的文本提示,使用LLaVA-1.5和Vicuna-13B LLM骨干進行推理需要18.2T的FLOPS和41.6G的內存使用量。大規模模型的資源密集型特性也引發了關于民主化和隱私保護的擔憂,因為當前主流的MLLMs,如GPT-4V和Gemini,由少數幾家主導企業控制,并在云端運行。如上述實驗所示,即使是開源的MLLMs,對計算資源的高要求也使得在邊緣設備上運行它們變得具有挑戰性。這進一步加劇了確保公平訪問和保護用戶隱私的挑戰。
鑒于這些挑戰,高效MLLMs的研究受到了越來越多的關注。這些努力的主要目標是減少MLLMs的資源消耗,擴大其適用性,同時盡量減少性能下降。高效MLLMs的研究始于用輕量級替代品替換大型語言模型,并進行典型的視覺指令微調。隨后,研究進一步通過以下方式增強了能力并擴展了用例:(1)引入更輕量的架構,注重效率,旨在減少參數數量或計算復雜度[25, 13, 18];(2)開發了更專業的組件,聚焦于高級架構的效率優化或賦予特定屬性,如局部性[19, 17, 12];(3)支持資源敏感任務,一些工作采用視覺token壓縮來提高效率,使MLLM的能力能夠轉移到資源密集型任務中,如高分辨率圖像和視頻理解[35, 39, 14, 40]。
在本綜述中,我們旨在呈現快速發展的高效MLLMs領域的最新進展,如圖2所示。我們將文獻組織成六個主要類別,涵蓋高效MLLMs的各個方面,包括架構、高效視覺、高效LLMs、訓練、數據和基準測試以及應用。Architecture 關注通過高效技術開發的MLLM框架,以降低計算成本。該架構由多個基于模態的基礎模型組成,具有不同于單模態模型的特征,從而促進了新技術的發展。
Efficient Vision 探討優化高效視覺特征提取策略,強調在保持準確性的同時提高效率的方法。它解決了集成高質量視覺數據以實現有效跨模態理解的問題。
Efficient LLMs 探索提高語言模型計算效率和可擴展性的策略。它研究了模型復雜性與性能之間的權衡,并提出了平衡這些競爭因素的有前景途徑。
Training 調查了對高效MLLMs開發至關重要的訓練方法的現狀。它解決了與預訓練階段、指令微調階段及整體訓練策略相關的挑戰,以實現最先進的結果。
Data and Benchmarks 評估用于多模態語言模型評估的數據集和基準測試的效率。它評估了數據集規模、復雜性和計算成本之間的權衡,同時倡導開發優先考慮效率和與現實世界應用相關性的基準測試。
Application 研究高效MLLMs在各個領域的實際影響,強調性能和計算成本之間的平衡。通過解決諸如高分辨率圖像理解和醫療問答等資源密集型任務,本節強調了高效MLLMs在拓寬其應用范圍和解決現實問題方面的潛力。
總之,這篇綜述深入探討了這些研究工作,探索了多種使MLLMs更具資源效率的策略。我們回顧了高效MLLMs的發展歷史,提供了高效MLLMs策略的分類法,并全面比較了現有高效MLLMs的性能。通過這一探索,我們希望提供對當前最先進技術的全面理解,從而揭示這一新興領域的復雜細微之處。此外,這篇綜述還充當了路線圖,突出了未來研究的潛在途徑,促進了對高效MLLMs領域挑戰和機遇的更深入理解。除了這篇綜述,我們還建立了一個GitHub倉庫,收錄了綜述中提到的論文,并按照相同的分類法進行整理,地址為:
按照標準的MLLM框架,高效MLLMs可以分為三個主要模塊:視覺編碼器g,負責接收和處理視覺輸入;預訓練語言模型,管理接收到的多模態信號并進行推理;視覺-語言投影器P,作為連接兩種模態的橋梁。為了提高通用MLLMs的效率,主要的優化在于處理高分辨率圖像、壓縮視覺令牌、實施高效結構以及使用緊湊的語言模型等策略。圖3展示了架構圖。表1概述了高效MLLMs的總結,包括基礎LLM、視覺編碼器、圖像分辨率和用于連接視覺和語言的投影器。這些高效MLLMs包括:MobileVLM[20]、LLaVA-Phi[21]、Imp-v1[22]、TinyLLaVA[23]、Bunny[24]、Gemini Nano-2[2]、MobileVLMv2[17]、MoE-LLaVA-3.6B[25]、Cobra[13]、Mini-Gemini[26]、Vary-toy[27]、TinyGPT-V[28]、SPHINX-Tiny[14]、ALLaVA[29]、MM1-3B[30]、LLaVA-Gemma[31]、Mipha-3B[32]、VLMamba[18]、MiniCPM-V2.0[70]、DeepSeek-VL[34]、KarmaVLM[71]、moondream2[72]。在本節中,我們將按順序全面概述這三個模塊以及其他高效組件。
Vision Transformer (ViT) [94] 架構在計算機視覺應用中獲得了顯著的關注并被廣泛使用。然而,隨著ViT模型規模的增長,可訓練參數和操作數量也隨之增加,影響了它們的部署和性能。此外,自注意力機制的計算和內存成本隨著圖像分辨率的增加呈二次增長。參考論文[95],本綜述旨在探索可用于高效MLLMs的最有效的視覺編碼方法。
時間序列數據在各個領域中無處不在,使得時間序列分析至關重要。傳統的時間序列模型是針對特定任務的,具有單一的功能和有限的泛化能力。最近,大型語言基礎模型顯示出了其在跨任務轉移、零次/少次學習和決策解釋性方面的顯著能力。這一成功激發了探索基礎模型以同時解決多個時間序列挑戰的興趣。主要有兩個研究方向,即從頭開始預訓練時間序列的基礎模型和將大型語言基礎模型適配到時間序列。這兩者都有助于開發一個高度泛化、多功能且易于理解的統一模型用于時間序列分析。本綜述提供了一個3E分析框架,用于全面檢查相關研究。具體來說,我們從三個維度——有效性、效率和解釋性——檢查現有工作。在每個維度中,我們專注于討論相關工作如何通過考慮時間序列領域的獨特挑戰來設計定制解決方案。此外,我們提供了一個領域分類法,以幫助后來者跟進領域特定的進展。此外,我們還介紹了促進該領域發展的廣泛資源,包括數據集、開源時間序列庫。同時維護一個GitHub倉庫以更新資源(//github.com/start2020/Awesome-TimeSeries-LLM-FM)。
1 引言
時間序列數據指的是在連續時間間隔記錄的數據點序列。時間序列分析有著悠久的研究歷史,與現實世界的應用密切相關[51]。最早的時間序列挖掘可以追溯到古埃及時期,當時人們分析尼羅河的波動來指導農業生產[35]。早期,時間序列研究主要集中在商業和經濟活動[57]、氣象和人口統計等領域,當時收集的數據相對較小,結構簡單(例如,單變量序列)。那時,統計學是主導方法論,促成了各種經典模型的發展,包括ARIMA、ARCH[50]和馬爾可夫轉換模型[64]。然而,大規模工業系統的出現,涵蓋了交通[216]、醫療保健[101]、物聯網(IoT)[59]和電子商務[8]等行業,導致了龐大而復雜的時間序列數據的產生。除了時間序列數據,一些系統還生成包括文本[82]、圖像[150]和圖表[98]在內的不同模態的數據。數據爆炸推動了具有日益復雜模式的新型時間序列應用的出現。例如,交通擁堵檢測[7]、心電圖(ECGs)分類[74]、電子商務銷售需求預測[17]。統計方法難以管理如此龐大和異質的數據集,且依賴于預定義模式假設,限制了它們在處理動態和復雜模式的應用中的實用性。 在過去幾十年中,機器學習和深度學習在各個領域取得了顯著進展,特別是在計算機視覺(CV)和自然語言處理(NLP)[196]。與統計方法不同,這些方法可以以更自動化的方式處理更大、更多樣化的數據集,減少了人力和專業知識的需求。這些技術引入了能夠檢測更復雜模式的先進架構,激發了時間序列社區的極大興趣[79, 106, 125, 160]。因此,出現了多種針對時間序列建模的有效架構,包括不同基礎架構的RNNs[108]、CNNs[29, 109, 207]、GNNs[28, 32]、Transformers[182]、擴散模型[107]。
盡管這些強大的架構將時間序列分析推向了一個新的水平,但在這一領域仍然存在未解決的挑戰。 第一個挑戰是關于知識的可遷移性[149]。時間序列通常表現出季節性(在特定間隔的規律波動)[56]和趨勢(數據的長期方向)[132]。除了這些可識別的模式外,時間序列數據還表現出一定程度的隨機性或噪聲,這通常歸因于未知的因素或模式。這些特征在不同領域之間甚至在同一領域隨時間的變化可能差異很大,由于分布的變化[88],使得將從一個特定任務中學到的模型或時間序列表示遷移到其他任務變得具有挑戰性。例如,對股市數據訓練的時間序列模型[188]學習到的模式受到經濟指標、投資者情緒等高度不穩定因素的影響。而氣候模型[131]則關注長期模式、季節循環,這些循環受物理定律而非人類行為的約束。由于數據性質的根本不同,不同領域間的知識可遷移性依然是一個挑戰。 ? 第二個挑戰與數據稀疏性有關。在許多傳統時間序列場景中[49, 157],數據的收集可能是每日、每月或每年進行的(例如,經濟指標[18]),這導致數據本質上的稀疏性。另外,獲取和標注數據可能存在隱私限制。例如,對心電圖(ECGs)[136]的分類需要臨床診斷,但這些診斷成本高昂,且數據可用性受到患者隱私的限制。這種數據稀缺性阻礙了深度學習模型的有效訓練。實際上,在大多數情況下,可用的數據集仍然不足以學習高質量的模型[110]。 ? 第三個挑戰是關于多模態學習[16]。在多模態時間序列分析的背景下,利用不同模態間的互補見解可以增強解釋性并提升模型性能。例如,在股票行情預測中,社交媒體上的新聞和評論可以直接影響交易活動,將它們整合到模型中可以實現更精確的預測[170, 189]。然而,對各種頻率或間隔收集的多模態數據進行對齊,以準確反映不同模態之間的時間關系,是具有挑戰性的。此外,不同模態可能需要不同的技術來有效捕捉信息,將這些信息無縫整合成一個統一的模型可能很復雜。 ?** 最后,解釋性也是非常需要的[210]**。詳細解釋模型如何生成預測或識別模式可以顯著增強時間序列的實用性和可接受性。一個案例是,如果一個公用事業公司使用一個能源需求預測模型[77]來計劃電力生成或設定價格,它需要向監管機構和消費者證明這些決策是基于合理且可理解的因素。然而,大多數現有的時間序列模型本質上是黑盒,缺乏對模型行為或預測的解釋。
為了應對上述挑戰,已經有一些努力,如時間序列的遷移學習[78, 120, 177, 193]、時間序列數據增強[181]、多模態時間序列分析[26, 42]以及時間序列的可解釋人工智能[143]。然而,這些工作大多集中在單一挑戰上。時間序列社區期待一個能同時解決多個挑戰的多方面模型。理想的模型應具有強大的泛化能力,能在訓練期間處理未見過的時間序列任務和數據稀缺的任務。此外,它還應該能夠無縫整合來自不同模態的數據,并為其決策過程提供可理解的解釋。 在過去幾年中,為了促進知識遷移,出現了一種結合遷移學習和自監督學習的新學習范式,即預訓練和微調范式[65]。它首先在一個數據豐富的源域上預訓練模型,然后在與源域相關的目標任務上進行微調[39]。BERT[41]是一個在大規模語料庫上預訓練的語言模型。研究人員發現,它可以適應廣泛的下游NLP任務,并大幅提升它們的性能水平。這項研究激發了NLP[97, 138, 212]和CV[14, 137]領域中大量的后續工作。這類模型被稱為基礎模型(FM)[22]。它們在各種下游任務上展示出強大的泛化能力。當NLP研究者通過增加數據或模型規模來擴展基礎模型時,他們觀察到這些更大的基礎模型獲得了一些在較小模型中不存在的令人驚訝的能力。這些意外的能力被稱為突現能力[179],包括上下文學習[24]、指令跟隨[69]、思維鏈(CoT)[128]。它們將語言基礎模型從一個可遷移的NLP任務解決者轉變為跨領域的通用任務解決者,現在廣泛被稱為大型語言模型(LLM)。LLM的發展迅速而強勁,催生了許多強大的LLM,如GPT系列[24, 138]。 受到大型語言基礎模型在NLP中顯著成功的啟發,時間序列社區越來越關注基礎模型在時間序列分析中的潛力[25, 82, 112]。一個研究方向是從零開始用時間序列數據預訓練一個基礎模型,仿照語言基礎模型。如TimesFM[36]和TimeGPT[58]等開創性的努力已經啟動了在時間序列領域內基礎模型的預訓練。然而,與NLP領域可用的龐大語料相比,時間序列領域的數據規模相對較小,使得難以產生具有LLM那樣突現能力的基礎模型。此外,基于時間序列數據預訓練的基礎模型缺乏語言生成能力,限制了它們生成人類可讀解釋的能力。受到大型語言基礎模型在各種下游任務中強大的泛化能力的吸引,另一個研究方向集中于將大型語言基礎模型(即LLM)適配于時間序列任務。大型語言基礎模型在跨任務泛化、零次/少次學習和推理方面的優勢可以解決知識遷移、數據稀缺性和可解釋性等時間序列分析中的挑戰。廣義上,有兩種將LLM適配于時間序列任務的范式,即嵌入可見的LLM適配和文本可見的LLM適配[113, 190, 192]。它們在LLM的使用上有所不同,使用微調的提示策略來適配LLM于時間序列任務。它們都面臨著時間與LLM空間對齊、時間序列屬性和模式識別、多模態數據融合的挑戰。盡管這兩條研究線探索了基于不同結構數據集(即時間序列或文本語料)預訓練的基礎模型,但它們都致力于實現一個統一且易于理解的架構,以解決多個時間序列挑戰,并具有強大的泛化能力。
本綜述對時間序列的基礎模型的發展進行了深入分析。該評審以圖2中的四個研究問題為指導,涵蓋三個分析維度(即有效性、效率、可解釋性)和一個分類法(即領域分類法)。(1) 如何在時間序列分析的背景下有效地適應基礎模型?我們將相關工作分為兩條研究線:從頭開始為時間序列預訓練基礎模型和將大型語言基礎模型(即LLMs)適用于時間序列。對于第一條線,我們通過兩個關鍵階段討論有效性:數據收集與對齊、架構設計。對于第二條線,我們識別了兩種適配范式,即嵌入可見的LLM適配和文本可見的LLM適配。在每種適配范式下,我們討論了LLM的利用、時間序列提取和多模態數據融合。時間序列提取包括獲取適當的時間序列表示、對齊時間空間和LLM空間、識別時間序列屬性和模式等挑戰。此外,我們還研究了LLM的多樣化角色,這進一步增加了LLM適配的有效性。(2) 如何高效地為時間序列任務預訓練或微調基礎模型?鑒于這一領域正在興起,當前的高效技術是從NLP領域借鑒的。因此,我們首先提供了一份可轉移至此背景的NLP領域尖端高效方法的簡要概覽。然后,我們討論了不同調整范式下的效率,并總結了已經使用的高效方法。(3) 如何獲得時間序列應用中基礎模型行為或決策的可解釋性?模型的實際部署需要可解釋性。我們從探索AI中的可解釋性概念開始,強調全局和局部解釋。然后,我們繼續回顧和提煉現有研究中的可解釋性進展。(4) 每個時間序列應用領域中基礎模型的發展情況如何?為回答這個問題,我們引入了一個領域分類法。這個分類法使我們能夠比較每個領域內現有研究的目標、貢獻和局限。此外,我們還提供了豐富的資源,如代碼、基準數據集、時間序列庫和加速LLM的工具,以支持未來的研究工作。圖4提供了基于四個研究問題的作品的綜合概覽。
論文組織 本綜述的其余部分安排如下:第2節介紹與基礎模型和時間序列分析相關的綜述,指導讀者了解每個領域的更多研究。第3節為讀者提供關于基礎模型和時間序列任務的基本知識。第4節深入探討了時間序列的基礎模型預訓練的關鍵階段。第5節檢查了LLM向時間序列任務的適配。第6節討論了模型微調和推理的效率。第7節總結了關于解釋模型行為或決策的研究。第8節介紹了各個領域內的進展。最后,第9節提供了包括基準數據集、代碼和時間序列庫以及LLM工具在內的資源。
自動程序修復(APR)試圖修補軟件缺陷并減少手動調試的工作。最近,隨著大型語言模型(LLMs)的進步,提出了越來越多的APR技術,顯著地促進了軟件開發和維護,并展示了卓越的性能。然而,由于基于LLM的APR領域的持續探索,研究人員很難理解當前的成就、挑戰以及潛在的機會。本項工作提供了第一個系統的文獻綜述,總結了2020年至2024年間LLMs在APR中的應用。我們分析了127篇關于LLMs、APR及其整合視角的相關論文。首先,我們分類了現有的流行LLMs,這些模型被應用于支持APR,并概述了三種部署策略。此外,我們詳細描述了一些從LLMs受益的特定修復場景,例如,語義錯誤和安全漏洞。進一步地,我們討論了幾個將LLMs整合到APR研究中的關鍵方面,例如,輸入形式和開放科學。最后,我們強調了仍需研究的一系列挑戰和未來研究的潛在指南。總體而言,我們的論文為APR社區提供了一個系統的研究概覽,幫助研究者全面理解成就并推動未來的研究。我們的工具在GitHub倉庫公開可用://github.com/iSEngLab/AwesomeLLM4APR。
軟件缺陷被公認為不可避免且具有破壞性,為全球用戶帶來安全問題,并每年造成數十億美元的經濟損失【11, 156】。對開發者而言,手動修復檢測到的軟件缺陷既非小事也耗時【13】。自動程序修復(APR)在軟件開發和維護中扮演著至關重要的角色,旨在無需人工干預下修復軟件缺陷。自2009年基礎工作GenProg【80, 155】以來,過去幾十年中APR已被廣泛研究【43, 105】,研究者們提出了多種APR技術,包括基于啟發式的【64, 80, 98, 177】、基于約束的【31, 99, 169, 171】以及基于模式的【76, 91, 92】。最近,受到深度學習(DL)進步的啟發,越來越多基于學習的APR技術被提出,這些技術利用神經網絡模型自動學習修復缺陷的模式【18, 66, 84, 85, 96, 142, 174, 175, 199, 200】。得益于DL模型從大量代碼庫中學習隱藏修復模式的強大能力,基于學習的APR在過去幾年中取得了顯著的表現【182】,吸引了學術界和工業界的廣泛關注【69, 70, 73】。 最近,大型語言模型(LLMs)已成功應用于廣泛的源代碼相關任務【147, 184】,如代碼生成【82, 148, 150, 201】、代碼總結【132, 133, 146】和測試生成【4, 24, 57, 108, 128】。得益于龐大的模型參數和廣闊的訓練數據,LLMs展示了令人印象深刻的性能,并從根本上改變了軟件工程(SE)社區的研究范式。在APR領域,從先驅研究開始,例如TFix【7】、CIRCLE【176】和AlphaRepair【163】,社區已經見證了利用LLMs的修復研究的爆炸性增長,已經取得了相當的優勢,并進一步顯示了未來研究的重大潛力。然而,LLMs在APR中的整合是一個相當復雜的任務,使得有興趣的研究者難以理解現有工作。例如,現有基于LLM的APR研究涵蓋了不同的研究視角(例如,經驗性【162】、技術性【163】和基準研究【187】)、修復階段(例如,補丁生成【186】和正確性評估【183】)、修復場景(例如,靜態警告【69】和語法錯誤【70】)、模型架構(例如,僅編碼器【185】和僅解碼器【100】)以及模型使用范式(例如,微調【176】、少量樣本【108】和零樣本【186】)。盡管該領域的探索仍在進行中,目前的文獻中缺乏關于LLMs在APR中應用的詳盡和系統的綜述,這使得研究人員難以理解現有工作的多樣化設計選擇和進行后續研究。 本文。為了彌補這一差距,我們的工作提供了第一個系統的文獻綜述,關于迅速出現的基于LLM的APR研究的部署。基于此,社區可以全面了解現有基于LLM的APR技術的優勢、劣勢和空白。我們討論了在最先進的APR研究中廣泛采用的LLMs是哪些,以及它們如何被整合到修復工作流中。我們收集了127篇相關論文,并從LLMs、APR和整合視角進行了系統分析。通過我們的分析,我們揭示了當前的挑戰,并指出了基于LLM的APR研究可能的未來方向。總體來說,這項工作為LLM基于APR社區正在進行的進展提供了一個徹底的概覽,幫助研究者在這個迅速發展的領域中導航,并推動創新實踐。 貢獻。總結來說,本工作做出了以下貢獻: * 調查方法論。我們進行了第一個系統的文獻綜述,涵蓋了127篇高質量的APR論文,這些論文利用近期的LLMs應對2020年至2024年4月的修復挑戰。 * 趨勢分析。我們就發布趨勢、出版地點分布和貢獻類型對選定的APR研究進行了詳細分析。 * LLMs視角。我們總結了46種用于支持程序修復的LLMs,并提供了APR領域不同LLM類別的典型使用和趨勢的概述。 * APR視角。我們描述了LLMs應用的常見修復場景,涵蓋了18種錯誤類型,如安全漏洞和編程問題。 * 整合視角。我們討論了一些關鍵因素,包括數據集、輸入表現形式和開放科學,這些因素影響LLMs整合到APR中的性能。 * 挑戰與機遇。我們總結了在APR領域應用LLMs的一些關鍵挑戰,并指出了未來基于LLM的APR研究的一些潛在指南。
論文組織。第2節介紹了關于APR和LLMs的一些基本概念。然后,根據上述貢獻,第3節列出了我們的研究問題(RQs)和收集與我們工作相關論文的研究方法。第4節調查了基于LLM的APR研究的趨勢和分布。第5節總結了現有APR研究所使用的LLMs。第6節闡述了LLMs應用的主要修復場景,并對每項工作進行了簡要描述。第7節討論了LLMs與APR整合過程中的一些關鍵因素,包括數據集、輸入表現形式、補丁正確性和開放科學。第8節討論了一些挑戰和實用指南。第9節得出結論。 我們試圖通過總結相關研究并進一步提供后續研究的指南,提供近期LLMs在APR應用的全面概覽。為了實現這一點,這個系統的文獻綜述回答了以下研究問題(RQs): * RQ1:利用LLMs的APR研究的趨勢是什么?
(1) LLMs在修復軟件缺陷方面顯示出蓬勃的發展趨勢,從2020年到2024年間共有127篇論文。 (2) 在APR中使用LLMs的會議論文數量顯著超過期刊論文,其中ICSE和TOSEM分別是最受歡迎的會議和期刊場所。 (3) 基于LLM的APR論文發表在不同的研究領域,包括軟件工程(SE)、人工智能(AI)和安全性。 (4) 有18種編程語言已被基于LLM的APR應用,其中Java、Python、C和C++是最常被目標的。 (5) LLMs已被應用于一些代表性較低的編程語言,如Verilog和Rust。 (6) 收集的大多數研究主要集中于引入新技術和進行實證研究,而有兩篇論文執行了用戶研究,以了解從業者對利用各種LLMs解決修復缺陷任務的態度和經驗。 * RQ2:哪些受歡迎的LLMs已被應用于支持APR?
(1) 我們總結了46種不同的LLMs,這些模型已被用于修復缺陷,并且可以根據模型架構分為三類,即僅編碼器、編碼器-解碼器和僅解碼器。 (2) 僅解碼器的LLMs是最常使用的模型架構,其中四種最受歡迎的LLMs均為僅解碼器模型。 (3) ChatGPT、GPT-4、CodeT5和Codex是現有基于LLM的APR研究中最受歡迎的LLMs,分別被使用了37次、25次、23次和21次。 (4) 我們總結了三種典型的利用LLMs中封裝的廣泛知識來處理特定程序修復任務的方法,即微調、少量樣本和零樣本。 * RQ3:哪些修復場景已由LLMs促進?
總體來看,我們觀察到LLMs已在文獻中的廣泛修復場景中得到應用,涉及18種錯誤類型。在一些由傳統APR主導的常見場景中,例如語義錯誤,研究者繼續投入大量努力研究LLMs的應用。此外,由于LLMs從所有可能的互聯網數據中學到的通用知識,基于LLM的APR已擴展到一些以前未探索的罕見場景,如硬件缺陷和Web UI。 * RQ4:哪些關鍵因素有助于LLMs在APR中的整合?
(1) 我們總結了78種不同的數據集,這些數據集被用來基準測試LLMs在修復缺陷中的應用。 (2) 在基于LLM的APR中,Defects4J、QuixBugs、BFP、CVEfixes和Big-Vul是最常使用的。 (3) 我們將所有收集的論文中的輸入形式分類為五組:原始修復輸入、提示輸入、掩碼輸入、對話式輸入和結構感知輸入。 (4) 提示輸入是在應用LLMs進行程序修復時最常用的形式,這表明設計有效的提示對于利用LLMs的自然語言處理能力尤為重要。 (5) 我們總結了一些利用LLMs預測補丁正確性的研究。 (6) 所有收集的論文中有62.99%已經開源了其工具,而在頂級SE出版物中,這一比例增加到了86.84%。
大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
基于Transformer的大型語言模型取得了巨大成功。然而,在推理過程中產生的顯著內存和計算成本,使得在資源受限的設備上部署大型模型變得具有挑戰性。在本文中,我們從算法角度調查了大型語言模型的壓縮和高效推理方法。就分類而言,類似于較小的模型,大型語言模型的壓縮和加速算法仍可以分為量化、剪枝、蒸餾、緊湊架構設計、動態網絡。然而,與較小模型相比,大型語言模型有兩個突出的特點:(1)大多數壓縮算法在壓縮后需要進行微調甚至重新訓練模型。大型模型最顯著的方面是與模型微調或訓練相關的非常高成本。因此,許多針對大型模型的算法,如量化和剪枝,開始探索無需調整的算法。(2)大型模型強調的是通用性和泛化能力,而不是在單一任務上的性能。因此,許多算法,如知識蒸餾,關注于如何在壓縮后保持其通用性和泛化能力。由于這兩個特點在早期的大型模型中并不十分明顯,我們進一步將大型語言模型區分為中等模型和“真正”的大型模型。此外,我們還提供了一些成熟框架的介紹,這些框架可以支持大型模型的高效推理,支持基本的壓縮或加速算法,極大地便利了用戶的模型部署。
大型語言模型(LLMs)已成為人工智能領域中一個重要且受歡迎的話題。與以往的語言模型相比,LLMs(例如ChatGPT、LLaMA、Claude)對未見數據顯示出了更強的泛化能力。此外,它們甚至展現出了較小模型所不具備的能力(即,突現能力),如多步驟推理和指令跟隨能力。這些進展展示了LLMs的巨大潛力。然而,在推理過程中的高昂內存和計算預算也阻礙了LLMs的部署。例如,一個帶有float32權重的10B模型消耗37GB內存,更不用說隨著序列長度增加,推理內存成本會以平方速度進一步增加。為了在資源受限的設備上,甚至是移動設備上部署模型,許多LLMs采用模型壓縮方法,如量化,以減少推理內存和計算成本。深度學習模型的模型壓縮是一個比LLMs出現得早得多的領域。它假設我們已經有了一個預定義的(甚至是預訓練的)模型。模型壓縮致力于減少模型在推理過程中的內存和計算成本,以便模型可以在各種資源受限的設備上運行。從算法上講,常見的模型壓縮方法包括:
許多之前的模型壓縮方法經常需要在壓縮后對模型進行微調。然而,由于微調LLMs的巨大預算,研究人員不得不探索免微調或至少更高效的微調方法。
與處理單一任務(如神經機器翻譯)不同,大型語言模型強調跨各種任務和未見數據的通用性和泛化能力,甚至是突現能力。因此,壓縮后的大型語言模型需要更仔細地驗證其通用性和泛化能力。 面對這些挑戰,提出了許多專門針對LLMs的壓縮方法。在本文中,我們將對這些方法進行全面綜述。為了更好地展示這些方法,我們進一步將參數約為十億或更少的語言模型,如BERT、GPT2,稱為中等模型,盡管它們通常被視為大型語言模型。參數超過十億的模型,如LLaMA、Claude、ChatGPT等,保持大型語言模型的名稱。原因是中等模型受上述兩個挑戰的影響較小,即中等模型相對容易進行微調,展示較少的突現能力。結果,許多針對中等模型的壓縮方法仍與較小模型的方法相似。 以下各節的組織如下:第2節將介紹一些初步知識。然后,我們將在第3、4、5、6、7、8節分別討論剪枝、知識蒸餾、量化、緊湊架構設計和動態網絡。
量化
量化是指將輸入值(在一個大的(通常是連續的)集合中)映射到輸出值(在一個小的(通常是有限的)集合中)的過程(例如,見圖2)。量化是減少內存成本和提高LLMs推理速度的最直接方法,特別是在支持低位數據類型(如INT4)快速操作的硬件上。值得注意的是,量化在神經網絡訓練和推理中都取得了令人印象深刻的成功,而本綜述的焦點僅在推理部分。量化方法相比其他壓縮方法(如剪枝和蒸餾)有幾個優勢。1)高壓縮比:將LLMs中的權重從32位浮點數量化為4位整數,可以將模型大小大幅壓縮至大約1/8,這對于內存受限的過程(如LLMs推理)至關重要。2)低成本:許多量化方法不需要重新訓練整個LLMs,使其對于計算資源有限的研究人員更加可行。3)高靈活性:量化與大多數其他壓縮方法兼容,為進一步提高性能引入了異常的機會。為了幫助讀者更好地理解量化方法,我們首先在3.1小節介紹標準量化方法和一些基本概念。然后,在3.2節,我們將簡要總結LLMs出現之前一些針對中等大小語言模型(如BERT,GPT2等)的最重要工作。3.3節和3.4節涵蓋了專注于LLMs推理的量化方法的最新進展。考慮到重新訓練擁有數十億參數的模型的困難,我們根據技術是否需要重新訓練,將LLMs量化方法分為兩部分。不需要重新訓練的方法(即,訓練后量化,PTQ)在3.3節討論,而需要重新訓練的方法(即,量化感知訓練,QAT)在3.4節討論。最后,在3.5節,我們討論了一些展現未來研究潛力但在前面章節中未覆蓋的高級話題。
剪枝
作為一種常規技術,用于壓縮和加速神經網絡,剪枝通過消除模型中非必需的權重或結構,同時保持網絡性能幾乎等同于它們原始狀態。盡管剪枝在卷積神經網絡(CNNs)中顯示出顯著結果,但與量化和蒸餾等其他壓縮技術相比,其對于LLMs的有效性較不穩健。剪枝效果減弱的原因來自于微調過程。由于模型參數數量龐大,微調的高成本使得實現剪枝的全部效果變得更加困難。然而,剪枝是壓縮模型的關鍵技術,需要進一步探索以增強和完善其在LLMs中取得改進結果的有效性。在接下來的部分,我們將在4.1節提供剪枝方法和基本概念的概覽。隨后,在4.2節,我們將詳細闡述為中等大小語言模型(即,參數達到數十億的模型)量身定制的剪枝技術,鑒于它們與LLMs的結構相似性。4.3節將深入探討專門為LLMs設計的剪枝方法論。最后,在4.4節,我們將介紹一些輔助技術,這些技術雖然不是剪枝方法,但與剪枝相關,用于改進LLMs的剪枝結果,并討論LLMs剪枝領域未來進步的挑戰。
知識蒸餾知識蒸餾(KD)是一種常用的模型壓縮和加速技術。具體實施過程包括將復雜教師模型獲得的知識轉移到一個更簡單的學生模型中,從而實現教師模型知識的更簡潔高效的表示。在5.1節中,我們將介紹知識蒸餾的一些基本概念,并提供知識蒸餾方法的簡要分類。然后我們將在5.2節總結使用中等大小語言模型(具有大約10億參數的語言模型)的各種知識蒸餾方法,并根據蒸餾發生在預訓練階段、微調階段還是兩者都有進行分類。最后,我們將在5.3節提供大型語言模型(具有超過10億參數的語言模型)知識蒸餾的詳細概述,將它們分類為黑盒蒸餾和白盒蒸餾。
緊湊架構設計是一種追求效率和簡化的設計哲學,其目標是通過優化網絡結構和算法,在減少計算資源和內存使用的同時,實現模型效率的顯著提升。具體而言,它可以分為微觀和宏觀兩個研究層次。本節將重點優化注意力計算和Transformer架構設計。由于Transformer層目前是LLM的主要組成部分,并且對于大型和中等大小模型來說沒有區別,因此我們在這里不會特別按模型大小分類方法。
動態網絡
擴大語言模型的規模已被證明是提升其在自然語言處理(NLP)任務上性能的有效方法。然而,擴展帶來的大量計算成本和內存需求構成了LLMs進步的主要挑戰。為了解決這些問題,同時仍然利用規模增加的好處,動態神經網絡(DyNNs)只針對每個輸入處理網絡的一個子集,使整個模型在資源受限的環境下更加靈活和高效地滿足計算需求。在NLP領域和LLMs領域,當前對DyNNs的研究主要包括以下三種方法:提前退出、級聯推理和專家混合(MoE)。提前退出旨在動態地在深度神經網絡(DNNs)的早期層次終止推理過程,從而減少計算成本并提高響應時間。直覺是,對于不太復雜的詞匯,往往可以在網絡的較早層次中準確完成預測。這些方法通常在網絡內部集成了一系列內部分類器,這些分類器在推理過程中提供提前退出的信號。已經提出了各種退出標準。這一系列工作主要關注并應用于小型或中型語言模型,如Bert。并且準確度可能不足以支持一般LLMs在更復雜和現實的場景中的應用。級聯推理利用不同大小的一系列語言模型處理不同復雜度級別的請求。Tabi提出了一個具有多級推理模型和基于概率的調度器的推理系統,以確定輸入查詢的處理策略,并平衡準確度和效率。FrugalGPT學會適應性地分類來自不同數據集和任務的查詢,并將它們引導至合適的LLMs API組合。EcoAssistant和另一個研究利用查詢緩存引用歷史數據以加快響應速度,并使用LLMs的層級結構來處理那些不匹配的新查詢。Mixture-of-Thoughts考慮了來自較弱LLMs的答案一致性作為問題難度的指標,以決定是否利用更強大的LLMs。一般來說,這一系列工作最近才出現,并顯示出發展更高效LLM系統的有希望的方向。與上述兩種方法相比,MoE的研究有著橫跨多個機器學習領域(包括NLP)的廣泛歷史。MoE通過多個子網絡水平擴展前饋網絡(FFN),其中只有一個或少數幾個會在單次前向傳播中被激活。它被廣泛地整合到今天的LLMs架構中,以提供高效而強大的服務。因此,在本節的剩余部分,我們將深入探討MoE的領域。7.1節首先介紹MoE的基本概念,接著是對將MoE整合到LLMs中的當代研究的廣泛綜述,包括算法和架構設計、訓練策略和實際應用。7.2節提供了一些代表性研究的簡要回顧,這些研究將MoE與之前討論的模型壓縮和加速技術集成在一起,突出了其在開發更全面和成本效益更高的LLM系統中的潛力。
隨著基于Transformer的模型的快速發展,出現了各種模型。由于不同的應用場景,它們在延遲、吞吐量、內存等方面有著額外的需求,這使得我們難以部署模型。在本節中,我們介紹了一些最近開發的針對LLM的推理加速框架,這些框架有效地提高了不同場景下模型的效率,如表6所示。我們根據通用性將框架分為通用框架和專用框架。這里還有一些特定于訓練的加速框架[351]、[352]、[353]、[354]、[355]、[356]、[357],由于本文關注于推理,我們不會具體討論它們。如果您想要部署訓練好的模型以快速獲得高效推理,可以參考這些框架[358]、[359]、[360]、[361]、[362]、[363]。
結論
在本文中,我們從算法角度對大型語言模型的壓縮和高效推理進行了全面調查,包括量化、剪枝、蒸餾、緊湊架構設計、動態網絡。此外,我們還介紹了一些為大型語言模型量身定制的流行壓縮和加速框架。然而,正如我們在引言中提到的,與較小模型相比,大型模型的壓縮和加速面臨更多挑戰。盡管現有算法已經做出了重大努力來應對這些挑戰,但許多算法仍然依賴于為壓縮小型模型而設計的框架,壓縮大型模型的挑戰依然存在。未來,需要進一步探索,以開發更高效、更有效的壓縮算法,同時確保大型模型的通用性和泛化能力。
將大型語言模型(LLMs)與圖表示學習(GRL)的整合標志著分析復雜數據結構的一次重要進化。這種合作利用LLMs的復雜語言能力來提高圖模型的上下文理解和適應性,從而擴大了GRL的范圍和潛力。盡管越來越多的研究致力于將LLMs整合到圖領域,但顯著缺乏一篇深入分析這些模型內核組成部分和操作的全面綜述。我們的綜述通過提出一種新穎的分類法來填補這一空白,該分類法從新的技術角度將這些模型分解為主要組成部分和操作技術。我們進一步將近期文獻分解為兩個主要組成部分,包括知識提取器和組織器,以及兩種操作技術,包括整合和訓練策略,揭示了有效的模型設計和訓練策略。此外,我們識別并探索了這一新興但尚未充分探索的領域中潛在的未來研究方向,提出了持續進步的路徑。
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。