亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要: 人臉親子關系驗證即通過給定的不同人的兩幅人臉圖像判斷其是否具有親子關系, 是計算機視覺和機器學習領域中一個重要的研究問題, 在丟失兒童尋找、社會媒體分析、圖像自動標注等領域具有廣泛的應用價值. 隨著人臉親子關系驗證問題受到越來越多的關注, 其在多個方面都得到了相應的發展, 本文對人臉親子關系驗證方法做了綜述整理. 首先, 簡要介紹了人臉親子關系驗證在近十年的研究現狀, 隨后對問題進行了定義并討論其面臨的挑戰. 接下來, 匯總了常用的親子數據庫, 對數據庫屬性做了詳細的總結和對比. 然后, 對人臉親子關系驗證方法進行了分類總結、對比, 以及不同方法的性能表現. 最后, 展望了人臉親子關系驗證今后可能的研究方向.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c201023

付費5元查看完整內容

相關內容

摘 要:小目標檢測長期以來是計算機視覺中的一個難點和研究熱點。在深度學習的驅動下,小目標 檢測已取得了重大突破,并成功應用于國防安全、智能交通和工業自動化等領域。為了進一步促進小 目標檢測的發展,本文對小目標檢測算法進行了全面的總結,并對已有算法進行了歸類、分析和比較。首先,對小目標進行了定義,并概述小目標檢測所面臨的挑戰。然后,重點闡述從數據增強、多尺度學 習、上下文學習、生成對抗學習以及無錨機制等方面來提升小目標檢測性能的方法,并分析了這些方法 的優缺點和關聯性。之后,全面介紹小目標數據集,并在一些常用的公共數據集上對已有算法進行了 性能評估。最后本文對小目標檢測技術的未來發展方向進行了展望。

付費5元查看完整內容

圖像的模糊問題影響人們對信息的感知、獲取及圖像的后續處理. 無參考模糊圖像質量評價是該問題的主要研究方向之一. 本文分析了近20年來模糊圖像無參考質量評價相關技術的發展. 首先, 本文結合主要數據集對圖像模糊失真進行分類說明; 其次, 對主要的模糊圖像無參考質量評價方法進行分類介紹與詳細分析; 隨后, 介紹了用來衡量模糊圖像無參考質量評價方法性能優劣的主要評價指標; 接著, 選擇典型數據集及評價指標, 并采用常見的模糊圖像無參考質量評價方法進行性能比較; 最后, 對無參考模糊圖像質量評價的相關技術及發展趨勢進行總結與展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c201030

付費5元查看完整內容

摘要: 近年來, 基于卷積神經網絡的目標檢測研究發展十分迅速, 各種檢測模型的改進方法層出不窮. 本文主要對近幾年內目標檢測領域中一些具有借鑒價值的研究工作進行了整理歸納. 首先, 對基于卷積神經網絡的主要目標檢測框架進行了梳理和對比. 其次, 對目標檢測框架中主干網絡、頸部連接層、錨點等子模塊的設計優化方法進行歸納, 給出了各個模塊設計優化的基本原則和思路. 接著, 在COCO數據集上對各類目標檢測模型進行測試對比, 并根據測試結果分析總結了不同子模塊對模型檢測性能的影響. 最后, 對目標檢測領域未來的研究方向進行了展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190756

付費5元查看完整內容

對話系統作為人機交互的重要方式,有著廣泛的應用前景。現有的對話系統專注于解決語義一致性和內容豐富性等問題,對于提高人機交互以及產生人機共鳴方向的研究關注度不高。如何讓生成的語句在具有語義相關性的基礎上更自然地與用戶交流是當前對話系統面臨的主要問題之一。首先對對話系統進行了整體情況的概括。接著介紹了情感對話系統中的對話情緒感知和情感對話生成兩大任務,并分別調研歸納了相關方法。對話情緒感知任務大致分為基于上下文和基于用戶信息兩類方法。情感對話生成的方法包括規則匹配算法、指定情感回復的生成模型和不指定情感回復的生成模型,并從情緒數據類別和模型方法等方面進行了對比分析。然后總結整理了兩大任務下數據集的特點和鏈接便于后續的研究,并歸納了當前情感對話系統中不同的評估方法。最后對情感對話系統的工作進行了總結和展望。

//fcst.ceaj.org/CN/abstract/abstract2684.shtml

付費5元查看完整內容

摘要: 當前,以網絡數據為代表的跨媒體數據呈現爆炸式增長的趨勢,呈現出了跨模態、跨數據源的復雜關聯及動態演化特性,跨媒體分析與推理技術針對多模態信息理解、交互、內容管理等需求,通過構建跨模態、跨平臺的語義貫通與統一表征機制,進一步實現分析和推理以及對復雜認知目標的不斷逼近,建立語義層級的邏輯推理機制,最終實現跨媒體類人智能推理。文中對跨媒體分析推理技術的研究背景和發展歷史進行概述,歸納總結視覺-語言關聯等任務的關鍵技術,并對研究應用進行舉例。基于已有結論,分析目前跨媒體分析領域所面臨的關鍵問題,最后探討未來的發展趨勢。

//www.jsjkx.com/CN/10.11896/jsjkx.210200086

付費5元查看完整內容

摘要: 圖像修復是計算機視覺領域中極具挑戰性的研究課題。近年來,深度學習技術的發展推動了圖像修復性能的顯著提升,使得圖像修復這一傳統課題再次引起了學者們的廣泛關注。文章致力于綜述圖像修復研究的關鍵技術。由于深度學習技術在解決“大面積缺失圖像修復”問題時具有重要作用并帶來了深遠影響,文中在簡要介紹傳統圖像修復方法的基礎上,重點介紹了基于深度學習的修復模型,主要包括模型分類、優缺點對比、適用范圍和在常用數據集上的性能對比等,最后對圖像修復潛在的研究方向和發展動態進行了分析和展望。

//www.jsjkx.com/CN/10.11896/jsjkx.210100048

付費5元查看完整內容

近年來,三維人臉識別研究取得了較大進展.相比 二維人臉識別,三維人臉識別更具有優勢,主要特點是在識 別中利用了三維形狀數據.該文首先根據三維形狀數據的 來源,將三維人臉識別分為基于彩色圖像的三維人臉識別、 基于高質 量 三 維 掃 描 數 據 的 三 維 人 臉 識 別、基 于 低 質 量 RGBGD圖像的三維人臉識別,分別闡述了各自具有代表性 的方法及其優缺點;其次分析了深度學習在三維人臉識別 中的應用方式;然后分析了三維人臉數據與二維圖像在雙 模態人臉識別中的融合方法,并介紹了常用的三維人臉數 據庫;最后 討 論 了 三 維 人 臉 識 別 面 臨 的 主 要 困 難 及 發 展 趨勢.

//jst.tsinghuajournals.com/CN/Y2021/V61/I1/77

付費5元查看完整內容

摘要 : 零樣本圖像分類指訓練集和測試集在數據的類別上沒有交集的情況下進行圖像分類 . 該技術 是解決類別標簽缺失問題的一種有效手段 , 因此受到了日益廣泛的關注 . 自提出此問題至今 , 零樣本 圖像分類的研究已經大致有十年時間 . 本文系統地對過去十年中零樣本圖像分類技術的研究進展進行 了綜述 , 主要包括以下 4 個方面 . 首先介紹零樣本圖像分類技術的研究意義及其應用價值 , 然后重點 總結和歸納零樣本圖像分類的發展過程和研究現狀 , 接下來介紹常用的數據集和評價準則 , 以及與零 樣本學習相關的技術的區別和聯系 , 最后分析有待深入研究的熱點與難點問題 , 并對未來的發展趨勢 進行了展望 .

關鍵詞: 零樣本圖像分類 , 屬性 , 詞向量 , 跨模態映射 , 領域適應學習

付費5元查看完整內容
北京阿比特科技有限公司