本文以擬合優度為例,重點討論了分布測試中的一些具體問題。特別是,我們不打算提供該領域所有主題的全面總結;但將提供獨立的證明和主要結果的推導,試圖強調統一的技術
這本書的目的是提供一個從零開始全面的貝葉斯優化介紹,并細致闡述所有關鍵的想法。目標受眾是機器學習、統計和相關領域的研究生和研究人員。然而,我也希望來自其他領域的從業者和研究人員能在這里找到一些用處。
本書分為三個主要部分,包括:
還包括一些其他的主題:
目錄內容: Introduction Gaussian Processes Modeling with Gaussian Processes Model Assessment, Selection, and Averaging Decision Theory for Optimization Utility Functions for Optimization Common Bayesian Optimization Policies Computing Policies with Gaussian Processes Implementation Theoretical Analysis Extensions and Related Settings A Brief History of Bayesian Optimization
引言概述
在機器學習的背景下,貝葉斯優化是一個古老的想法。盡管貝葉斯優化的歷史已經很長,但在過去的十年里,它經歷了一段復興和快速發展的時期。這種復興的主要驅動力是計算方面的進步,這使得貝葉斯建模和推理的工具越來越復雜。
這本書的目的是提供一個從零開始的全面的貝葉斯優化介紹,并細致闡述所有的關鍵思想。這種自下而上的方法允許我們在貝葉斯優化算法中確定統一的主題,這些主題可能在以往的調研文獻時丟失。
這本書分為三個主要部分。第2-4章涵蓋了高斯過程建模的理論和實踐方面。這類模型是貝葉斯優化文獻中最受歡迎的,其中包含的材料對接下來的幾章至關重要。
第5-7章介紹了序列決策理論及其在優化中的應用。雖然這個理論需要一個目標函數的模型和我們對它的觀察,介紹是不可知的模型的選擇,可以獨立地閱讀前幾章的高斯過程。這些內容是在第8-10章中介紹的,討論了使用高斯過程模型的貝葉斯優化的細節。第8-9章討論了計算和實現的細節,第10章討論了貝葉斯優化算法的理論性能界限,其中大多數結果密切依賴于目標函數的高斯過程模型或相關的重新生成核希爾伯特空間。
一些應用的細微差別需要修改基本序列優化方案(這是前幾章的重點),第11章介紹了對這一基本設置的幾個值得注意的擴展。每一個都是通過貝葉斯決策理論的統一視角系統地呈現出來的,以說明一個人在面對新情況時應該如何處理。最后,第12章提供了一個簡單和獨立的貝葉斯歷史介紹。
這本書的第三版繼續演示如何應用概率論,以獲得洞察到真實的,日常統計問題和情況。這種方法最終導致了對統計程序和策略的直觀理解,最常用的是實踐工程師和科學家。這本書是為統計學或概率和統計的入門課程而寫的,為工程、計算機科學、數學、統計學和自然科學的學生而寫。因此,它假定你有初等微積分知識。
第一章簡要介紹統計學,介紹它的兩個分支,描述性統計和推理統計學,并簡要介紹該學科的歷史和一些人的早期工作為今天所做的工作奠定了基礎。描述性統計的主題將在第二章中討論。描述數據集的圖和表在本章中給出,以及用于總結數據集某些關鍵屬性的數量。要想從數據中得出結論,就必須了解數據的來源。例如,通常假設數據是來自某些總體的“隨機樣本”。為了準確理解這意味著什么,以及將樣本數據屬性與總體屬性相關聯的結果是什么,有必要對概率有一些了解,這是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。我們的概率研究將在第四章繼續,這一章涉及隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常出現的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正態、均勻、伽馬、卡方、t和F等隨機變量。在第6章中,我們研究了樣本均值和樣本方差等抽樣統計量的概率分布。我們將展示如何使用一個著名的概率理論結果,即中心極限定理,來近似樣本均值的概率分布。此外,我們還介紹了關節基礎數據來自正態分布總體的重要特殊情況下的樣本均值和樣本方差的概率分布。第7章展示了如何使用數據來估計感興趣的參數。第8章介紹了統計假設檢驗的重要主題,它涉及到使用數據來檢驗特定假設的可信性。第9章討論回歸的重要課題。簡單線性回歸(包括回歸到均值、殘差分析和加權最小二乘等子主題)和多元線性回歸都被考慮在內。第10章是方差分析。考慮了單向和雙向(有或沒有交互的可能性)問題。第11章是關于擬合優度檢驗,它可以用來檢驗所提出的模型是否與數據一致。文中給出了經典的卡方擬合優度檢驗,并將其應用于列聯表的獨立性檢驗。本章的最后一節介紹了Kolmogorov-Smirnov程序,用于測試數據是否來自特定的連續概率分布。第12章討論了非參數假設檢驗,當人們無法假設潛在的分布具有某些特定的參數形式(如正態分布)時,可以使用非參數假設檢驗。第13章考慮質量控制的主題,一個關鍵的統計技術在制造和生產過程。我們考慮了各種控制圖,不僅包括休哈特控制圖,還包括基于移動平均線和累積總和的更復雜的控制圖。第14章討論與壽命試驗有關的問題。在本章中,指數分布,而不是正態分布,起著關鍵作用。
本書介紹了數據科學的數學和算法基礎,包括機器學習、高維幾何和大型網絡分析。主題包括高維數據的反直覺性質,重要的線性代數技術,如奇異值分解,隨機行走理論和馬爾可夫鏈,機器學習的基礎和重要算法,聚類算法和分析,大型網絡的概率模型,表示學習包括主題建模和非負矩陣分解、小波和壓縮感知。發展了重要的概率技術,包括大數定律、尾部不等式、隨機投影分析、機器學習中的泛化保證,以及用于分析大型隨機圖中的相變的矩方法。此外,還討論了重要的結構和復雜性度量,如矩陣規范和VC維。這本書是適合的本科生和研究生課程的設計和分析的算法的數據。
《現代統計學導論》是對之前的游戲《統計學與隨機化和模擬導論》的重新構想。這本新書著重強調了探索性數據分析(特別是使用可視化、摘要和描述性模型探索多元關系),并提供了使用隨機化和引導的基于模擬的推理的全面討論,接著介紹了基于中心極限定理的相關方法。
第1部分:數據介紹。數據結構、變量、摘要、圖形、基本數據收集和研究設計技術。 第2部分:探索性數據分析。數據可視化和總結,特別強調多變量關系。 第3部分:回歸建模。用線性和邏輯回歸建模數值和分類結果,并使用模型結果來描述關系和作出預測。 第4部分:推理的基礎。案例研究被用來引入隨機測試、bootstrap間隔和數學模型的統計推理的思想。 第5部分:統計推斷。使用隨機化測試、引導間隔和數值和分類數據的數學模型的統計推斷的進一步細節。 第6部分:推理建模。擴展推理技術提出了迄今為止的線性和邏輯回歸設置和評估模型性能。
我們希望讀者能從本書中汲取三種思想,并為統計學的思維和方法打下基礎。
統計學是一個具有廣泛實際應用的應用領域。
你不必成為數學大師,也可以從有趣的、真實的數據中學習。
數據是混亂的,統計工具是不完善的。
地址:
本書通過使用Python的案例研究來探索數據分析和統計的基礎知識。這本書將向你展示如何自信地用Python編寫代碼,以及如何使用各種Python庫和函數來分析任何數據集。該代碼在Jupyter 筆記本中提出,可以進一步調整和擴展。
這本書分為三個部分——用Python編程,數據分析和可視化,以及統計。首先介紹Python——語法、函數、條件語句、數據類型和不同類型的容器。然后,您將回顧更高級的概念,如正則表達式、文件處理和用Python解決數學問題。
本書的第二部分將介紹用于數據分析的Python庫。將有一個介紹性的章節涵蓋基本概念和術語,和一個章節的NumPy(科學計算庫),NumPy(數據角力庫)和可視化庫,如Matplotlib和Seaborn。案例研究將包括作為例子,以幫助讀者理解一些實際應用的數據分析。
本書的最后幾章集中在統計學上,闡明了與數據科學相關的統計學的重要原則。這些主題包括概率、貝葉斯定理、排列和組合、假設檢驗(方差分析、卡方檢驗、z檢驗和t檢驗),以及Scipy庫如何簡化涉及統計的繁瑣計算。
你會: 進一步提高你的Python編程和分析技能 用Python解決微積分、集合論和代數中的數學問題 使用Python中的各種庫來結構化、分析和可視化數據 使用Python進行實際案例研究 回顧基本的統計概念,并使用Scipy庫來解決統計方面的問題
為土木工程專業的學生和專業人士介紹概率機器學習的關鍵概念和技術;有許多循序漸進的例子、插圖和練習。
這本書向土木工程的學生和專業人員介紹了概率機器學習的概念,以一種對沒有統計學或計算機科學專業背景的讀者可訪問的方式提出了關鍵的方法和技術。通過一步步的例子、插圖和練習,它清晰而直接地展示了不同的方法。掌握了材料,讀者將能夠理解更高級的機器學習文獻,從這本書中提取。
本書介紹了概率機器學習的三個子領域的關鍵方法:監督學習、非監督學習和強化學習。它首先涵蓋了理解機器學習所需的背景知識,包括線性代數和概率論。接著介紹了有監督和無監督學習方法背后的貝葉斯估計,以及馬爾可夫鏈蒙特卡洛方法,該方法使貝葉斯估計能夠在某些復雜情況下進行。這本書接著涵蓋了與監督學習相關的方法,包括回歸方法和分類方法,以及與非監督學習相關的概念,包括聚類、降維、貝葉斯網絡、狀態空間模型和模型校準。最后,本書介紹了不確定環境下理性決策的基本概念,以及不確定和序列上下文下理性決策的基本概念。在此基礎上,這本書描述了強化學習的基礎,虛擬代理學習如何通過試驗和錯誤作出最優決策,而與它的環境交互。
目錄內容: Chapter 1: 引言 Introduction Part one: 背景 Background
Chapter 2: 線性代數 Chapter 3: 概率理論 Probability Theory Chapter 4: 概率分布 Probability Distributions Chapter 5: 凸優化 Convex Optimization Part two: 貝葉斯估計 Bayesian Estimation Chapter 6: 從數據中學習 Learning from Data Chapter 7: 馬爾科夫鏈蒙特卡洛 Markov Chain Monte Carlo
Part three: 監督學習 Supervised Learning Chapter 8: 回歸 Regression Chapter 9: 分類 Classification Part four: 無監督學習 Unsupervised Learning Chapter 10: 聚類 Clustering Chapter 11: 貝葉斯網絡 Bayesian Networks Chapter 12: 狀態空間 State-Space Models Chapter 13: 模型 Model Calibration Part five: 強化學習 Reinforcement Learning Chapter 14: 不確定上下文決策 Decision in Uncertain Contexts Chapter 15: 序列決策 Sequential Decisions
這個網絡研討會介紹了數據科學的基礎知識,并簡要回顧了一些統計的基本概念。它還概述了如何擁有一個成功的數據科學項目。
本書介紹了數據科學的數學和算法基礎,包括機器學習、高維幾何和大型網絡的分析。主題包括高維數據的反直覺性質、重要的線性代數技術,如奇異值分解、隨機游動和馬爾科夫鏈理論、機器學習的基本原理和重要算法、聚類算法和分析、大型網絡的概率模型、表示學習,包括主題建模和非負矩陣分解、小波和壓縮感知。本文提出了一種正概率技術,包括大數定律、尾部不等式、隨機投影分析、機器學習中的泛化保證以及分析大隨機圖相變的矩量法。此外,還討論了重要的結構和復雜性度量,如矩陣范數和vc維。本書適用于設計和分析數據算法的本科和研究生課程。