優化和機器學習的相互作用是現代計算科學最重要的發展之一。優化的公式和方法在設計從大量數據中提取基本知識的算法方面被證明是至關重要的。然而,機器學習并不僅僅是優化技術的消費者,而是一個快速發展的領域,它本身也在產生新的優化思想。這本書以一種對兩個領域的研究人員都可訪問的方式捕獲了優化和機器學習之間交互的藝術的狀態。
優化方法因其廣泛的適用性和吸引人的理論特性而在機器學習中占有重要地位。當今機器學習模型的復雜性、規模和多樣性日益增加,需要對現有假設進行重新評估。這本書開始了重新評估的過程。它描述了在諸如一階方法,隨機近似,凸松弛,內點方法,和近端方法等已建立的框架。它還專門關注一些新的主題,如正則化優化、魯棒優化、梯度和次梯度方法、分裂技術和二階方法。其中許多技術的靈感來自其他領域,包括運籌學、理論計算機科學和優化子領域。這本書將豐富機器學習社區和這些其他領域以及更廣泛的優化社區之間正在進行的交叉發展。
這本書調研了大約20世紀90年代末機器學習的許多重要課題。我的意圖是在理論和實踐之間尋求一個中間橋梁帶。筆記集中在機器學習的重要思想上——它既不是一本實踐手冊,也不是一個理論證明的概要。我的目標是為讀者提供充分的準備,使一些關于機器學習的廣泛文獻易于理解。草稿只有200多頁(包括扉頁)。
這本書集中在機器學習的重要思想上。對于我所陳述的許多定理,我并沒有給出證明,但對于形式的證明,我確實給出了可信的論據和引用。而且,我沒有討論許多在應用中具有實際重要性的問題;這本書不是機器學習實踐手冊。相反,我的目標是為讀者提供充分的準備,使大量關于機器學習的文獻易于理解。
學習,就像智力一樣,涵蓋了如此廣泛的過程,很難精確定義。詞典的定義包括這樣的短語:“通過學習、指導或經驗獲得知識、或理解、或技能”和“通過經驗改變行為傾向”。動物學家和心理學家研究動物和人類的學習。在這本書中,我們關注的是機器學習。動物和機器學習之間有一些相似之處。當然,機器學習的許多技術都來自心理學家的努力,他們通過計算模型使動物和人類學習的理論更加精確。機器學習研究人員正在探索的概念和技術似乎也可能闡明生物學習的某些方面。
統計學是關于可觀測現象的數學建模,使用隨機模型,以及分析數據:估計模型的參數和檢驗假設。在這些注釋中,我們研究了各種評估和測試程序。我們考慮它們的理論性質,并研究各種最優化的概念。
學習使用Python分析數據和預測結果的更簡單和更有效的方法
Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。
機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。
使用線性和集成算法族預測結果
建立可以解決一系列簡單和復雜問題的預測模型
使用Python應用核心機器學習算法
直接使用示例代碼構建自定義解決方案
機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。
本書將側重于統計學習和序列預測(在線學習)的理論方面。在本筆記的第一部分,我們將使用經典的工具:集中不等式、隨機平均、覆蓋數字和組合參數來分析學習的i.i.d.數據。然后,我們將重點放在序列預測上,并開發許多用于在此場景中學習的相同工具。后一部分是基于最近的研究,并提出了進一步研究的方向。我們在整個課程中強調的極大極小方法,提供了一種比較學習問題的系統方法。除了理論分析,我們將討論學習算法,特別是學習和優化之間的重要聯系。我們的框架將處理開發接近最優和計算效率的算法。我們將用矩陣補全、鏈路預測等問題來說明這一點。如果時間允許,我們將深入了解信息理論和博弈論,并展示我們的新工具如何無縫地產生許多有趣的結果。
機器學習簡明指南,不可錯過!
A Machine Learning Primer
亞馬遜研究科學家Mihail Eric關于機器學習實踐重要經驗。包括監督學習、機器學習實踐、無監督學習以及深度學習。具體為:
監督學習
機器學習實踐
無監督學習
深度學習
Python中的數據科學和分析是為學術和商業環境中的數據科學和數據分析從業者設計的。其目的是通過使用Python開發的工具(如SciKit-learn、Pandas、Numpy等)向讀者介紹數據科學中使用的主要概念。鑒于Python最近在數據科學社區的流行,它的使用特別有趣。有經驗的程序員和新手都可以使用這本書。
本書的組織方式是各個章節相互獨立,這樣讀者就可以放心地使用其中的內容作為參考。這本書從過程和獲得的結果的角度討論了什么是數據科學和分析。還介紹了Python的重要特性,包括Python入門。機器學習、模式識別和人工智能的基本元素在書的其余部分使用的算法和實現的基礎上也出現在書的第一部分。
本書的第二部分介紹了使用Python、聚類技術和分類算法的回歸分析。層次聚類、決策樹和集成技術,以及降維技術和推薦系統也被探討。書的最后一部分討論了支持向量機算法和內核技巧。
管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。
教材:
關于大數據技術的信息很多,但將這些技術拼接到端到端企業數據平臺是一項艱巨的任務,沒有得到廣泛的討論。通過這本實用的書,您將學習如何在本地和云中構建大數據基礎設施,并成功地構建一個現代數據平臺。
本書非常適合企業架構師、IT經理、應用程序架構師和數據工程師,它向您展示了如何克服Hadoop項目期間出現的許多挑戰。在深入了解以下內容之前,您將在一個徹底的技術入門中探索Hadoop和大數據領域中可用的大量工具:
-平臺: 了解部署、操作、安全性、高可用性和災難恢復的各個方面,以及將平臺與企業IT的其他部分集成在一起所需了解的所有內容
本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。